Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Bioorg Med Chem ; 24(12): 2595-602, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27134120

RESUMO

Described herein are our limited structure-activity relationship (SAR) studies on a 5:7-fused heterocycle (1), containing the 4,6,8-triaminoimidazo[4,5-e][1,3]diazepine ring system, whose synthesis and potent broad-spectrum anticancer activity we reported a few years ago. Our SAR efforts in this study are mainly focused on judicial attachment of substituents at N-1 and N(6)-positions of the heterocyclic ring. Our results suggest that there is some subtle correlation between the substituents attached at the N-1 position and those attached at the N(6)-position of the heterocycle. It is likely that there is a common hydrophobic binding pocket on the target protein that is occupied by the substituents attached at the N-1 and N(6)-positions of the heterocyclic ligand. This pocket appears to be large enough to hold either a C-18 alkyl chain of N(6) and no attachment at N-1, or a combined C-10 at N(6) and a CH2Ph at N-1. Any alkyl chain shorter or longer than C-10 at N(6) with a CH2Ph attached at N-1, would result in decrease of biological activity.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Azepinas/química , Azepinas/farmacologia , Antineoplásicos/síntese química , Azepinas/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Imidazóis/síntese química , Imidazóis/química , Imidazóis/farmacologia , Ligantes , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade
2.
Bioorg Med Chem Lett ; 24(4): 1154-7, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24461293

RESUMO

Examples of ring-expanded nucleosides (RENs), represented by general structures 1 and 2, exhibited dual anti-HCV and anti-HIV activities in both cell culture systems and the respective target enzyme assays, including HCV NTPase/helicase and human RNA helicase DDX3. Since HCV is a leading co-infection in late stage HIV AIDS patients, often leading to liver cirrhosis and death, the observed dual inhibition of HCV and HIV by the target nucleoside analogues has potentially beneficial implications in treating HIV patients infected with HCV.


Assuntos
Antivirais/farmacologia , Azepinas/farmacologia , HIV/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Imidazóis/farmacologia , Antivirais/síntese química , Antivirais/química , Azepinas/síntese química , Azepinas/química , RNA Helicases DEAD-box/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
3.
Bioorg Med Chem ; 21(17): 4893-903, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23891230

RESUMO

Guanase is an important enzyme of the purine salvage pathway of nucleic acid metabolism and its inhibition has beneficial implications in viral, bacterial, and cancer therapy. The work described herein is based on a hypothesis that azepinomycin, a heterocyclic natural product and a purported transition state analog inhibitor of guanase, does not represent the true transition state of the enzyme-catalyzed reaction as closely as does iso-azepinomycin, wherein the 6-hydroxy group of azepinomycin has been translocated to the 5-position. Based on this hypothesis, and assuming that iso-azepinomycin would bind to guanase at the same active site as azepinomycin, several analogs of iso-azepinomycin were designed and successfully synthesized in order to gain a preliminary understanding of the hydrophobic and hydrophilic sites surrounding the guanase binding site of the ligand. Specifically, the analogs were designed to explore the hydrophobic pockets, if any, in the vicinity of N1, N3, and N4 nitrogen atoms as well as O(5) oxygen atom of iso-azepinomycin. Biochemical inhibition studies of these analogs were performed using a mammalian guanase. Our results indicate that (1) increasing the hydrophobicity near O(5) results in a negative effect, (2) translocating the hydrophobicity from N3 to N1 also results in decreased inhibition, (3) increasing the hydrophobicity near N3 or N4 produces significant enhancement of inhibition, (4) increasing the hydrophobicity at either N3 or N4 with a simultaneous increase in hydrophobicity at O(5) considerably diminishes any gain in inhibition made by solely enhancing hydrophobicity at N3 or N4, and (5) finally, increasing the hydrophilic character near N3 has also a deleterious effect on inhibition. The most potent compound in the series has a Ki value of 8.0±1.5µM against rabbit liver guanase.


Assuntos
Azepinas/química , Inibidores Enzimáticos/síntese química , Guanina Desaminase/antagonistas & inibidores , Imidazóis/química , Animais , Azepinas/síntese química , Azepinas/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Guanina Desaminase/metabolismo , Isomerismo , Cinética , Fígado/enzimologia , Ligação Proteica , Coelhos , Relação Estrutura-Atividade
4.
Bioorg Med Chem ; 21(3): 618-31, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23290252

RESUMO

Judicial structural modifications of 5:7-fused ring-expanded nucleosides (RENs), based on molecular modeling studies with one of its known targets, human RNA helicase (hDDX3), led to the lead, novel, 5:7-5-fused tricyclic heterocycle (1). The latter exhibited promising broad-spectrum in vitro anti-cancer activity against a number of cancer cell lines screened. This paper describes our systematic, albeit limited, structure-activity relationship (SAR) studies on this lead compound, which produced a number of analogs with broad-spectrum in vitro anti-cancer activities against lung, breast, prostate, and ovarian cancer cell lines, in particular compounds 15i, 15j, 15m and 15n which showed IC(50) values in submicromolar to micromolar range, and are worthy of further explorations. The SAR data also enabled us to propose a tentative SAR model for future SAR efforts for ultimate realization of optimally active and minimally toxic anti-cancer compounds based on the diimidazo[4,5-d:4',5'-f][1,3]diazepine structural skeleton of the lead compound 1.


Assuntos
Antineoplásicos/farmacologia , Azepinas/farmacologia , Desenho de Fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Azepinas/síntese química , Azepinas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 22(23): 7214-8, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23084905

RESUMO

In our long and broad program to explore structure-activity relationships of the natural product azepinomycin and its analogues for inhibition of guanase, an important enzyme of purine salvage pathway of nucleic acid metabolism, it became necessary to investigate if the nucleoside analogues of the heterocycle azepinomycin, which are likely to be formed in vivo, would be more or less potent than the parent heterocycle. To this end, we have resynthesized both azepinomycin (1) and its two diastereomeric nucleoside analogues (2 and 3), employing a modified, more efficient procedure, and have biochemically screened all three compounds against a mammalian guanase. Our results indicate that the natural product is at least 200 times more potent toward inhibition of guanase as compared with its nucleoside analogues, with the observed K(i) of azepinomycin (1) against the rabbit liver guanase=2.5 (±0.6)×10(-6) M, while K(i) of Compound 2=1.19 (±0.02)×10(-4) M and that of Compound 3=1.29 (±0.03)×10(-4) M. It is also to be noted that while IC(50) value of azepinomycin against guanase in cell culture has long been reported, no inhibition studies nor K(i) against a pure mammalian enzyme have ever been documented. In addition, we have, for the first time, determined the absolute stereochemistry of the 6-OH group of 2 and 3 using conformational analysis coupled with 2-D (1)H NMR NOESY.


Assuntos
Azepinas/química , Inibidores Enzimáticos/síntese química , Guanina Desaminase/antagonistas & inibidores , Compostos Heterocíclicos/química , Nucleosídeos/síntese química , Animais , Azepinas/síntese química , Azepinas/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Guanina Desaminase/metabolismo , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/isolamento & purificação , Cinética , Fígado/enzimologia , Espectroscopia de Ressonância Magnética , Conformação Molecular , Nucleosídeos/química , Nucleosídeos/isolamento & purificação , Coelhos , Estereoisomerismo , Relação Estrutura-Atividade
6.
J Biol Chem ; 285(32): 24707-16, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20529860

RESUMO

MicroRNAs (miRNAs) act in post-transcriptional gene silencing and are proposed to function in a wide spectrum of pathologies, including cancers and viral diseases. Currently, to our knowledge, no detailed mechanistic characterization of small molecules that interrupt miRNA pathways have been reported. In screening a small chemical library, we identified compounds that suppress RNA interference activity in cultured cells. Two compounds were characterized; one impaired Dicer activity while the other blocked small RNA-loading into an Argonaute 2 (AGO2) complex. We developed a cell-based model of miRNA-dependent tumorigenesis, and using this model, we observed that treatment of cells with either of the two compounds effectively neutralized tumor growth. These findings indicate that miRNA pathway-suppressing small molecules could potentially reverse tumorigenesis.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/terapia , Células 3T3 , Animais , Proliferação de Células , Inativação Gênica , Células HeLa , Humanos , Camundongos , Camundongos Nus , Modelos Biológicos , Transplante de Neoplasias , Fenótipo , Interferência de RNA
7.
Bioorg Med Chem Lett ; 21(2): 756-9, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21183343

RESUMO

Synthesis and biochemical inhibition studies of a novel transition state analog inhibitor of guanase bearing the ring structure of azepinomycin have been reported. The compound was synthesized in five-steps from a known compound and biochemically screened against the rabbit liver guanase. The compound exhibited competitive inhibition profile with a K(i) of 16.7±0.5µM.


Assuntos
Azepinas/química , Azepinas/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Guanina Desaminase/antagonistas & inibidores , Guanina Desaminase/metabolismo , Animais , Fígado/enzimologia , Coelhos , Relação Estrutura-Atividade
8.
Bioconjug Chem ; 21(8): 1494-507, 2010 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-20715854

RESUMO

The design and synthesis of bis[2-(3-carboxyphenoxy)carbonylethyl]phosphinic acid (m-BCCEP, 1) as a site-directed affinity reagent for cross-linking human hemoglobin have been reported as part of our long-term goal to generate artificial blood for emergency transfusions. Molecular modeling techniques were used to design the reagent, employing crystal coordinates of human hemoglobin A(0) imported from the Protein Data Bank. It was synthesized in four steps commencing from 3-hydroxybenzoic acid. The reagent 1 was converted to its trisodium salt to allow effective cross-linking in an aqueous medium. The reagent 1, as its trisodium salt, was found to specifically cross-link stroma-free human hemoglobin A(0) in the beta-cleft under oxygenated reaction conditions at neutral pH. The SDS-PAGE analyses of the modified hemoglobin pointed to the molecular mass range of 32 kDa as anticipated. The HPLC analyses of the product suggested that the cross-link had formed between the beta(1)-beta(2) subunits. Molecular dynamics simulation studies on the reagent-HbA(0) complex suggested that the predominant amino acid residues involved in the cross-linking are N-terminus Val-1 or Lys-82 on one of the beta-subunits and Lys-144 on the other. These predictions were borne out by MALDI-TOF MS analyses data of the peptide fragments obtained from tryptic digestion of the cross-linked product. The data also suggested the presence of a minor cross-link between Val-1 and Lys-82 on the opposing subunits. The oxygen equilibrium measurements of the m-BCCEP-modified hemoglobin product at 37 degrees C showed oxygen affinity (P(50) = 25.8 Torr) comparable to that of the natural whole blood (P(50) = 27.0 Torr) and significantly lower than that of stroma-free hemoglobin (P(50) = 14.19 Torr) assayed under identical conditions. The measured Hill coefficient value of 1.91 of the m-BCCEP-modified Hb product points to the reasonable retainment of oxygen-binding cooperativity after the cross-link formation.


Assuntos
Reagentes de Ligações Cruzadas/química , Hemoglobina A/química , Hidroxibenzoatos/química , Ácidos Fosfínicos/química , Reagentes de Ligações Cruzadas/síntese química , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Estereoisomerismo
9.
Bioorg Med Chem Lett ; 20(15): 4386-9, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20594843

RESUMO

Synthesis and broad-spectrum anticancer activity of a novel heterocyclic compound 1 containing the title imidazo[4,5-e][1,3]diazepine ring system have been reported. The compound shows potent in vitro antitumor activity with low micromolar IC(50)'s against prostate, lung, breast, and ovarian cancer cell lines tested. The long alkyl chain attached to the six-position of the heterocyclic ring of 1 appears to be necessary for the observed biological activity.


Assuntos
Antineoplásicos/química , Azepinas/química , Compostos Heterocíclicos/química , Neoplasias/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/uso terapêutico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Relação Estrutura-Atividade
10.
J Med Chem ; 51(3): 694-8, 2008 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-18173230

RESUMO

Four nucleoside analogues ( 1- 4) containing a common heterocyclic base, 4(7)-amino-6(5) H-imidazo[4,5- d]pyridazin-7(4)one, were screened against calf-intestine adenosine deaminase. Compounds 1 and 3 with K(i) values of 10-12 microM are more than four times as potent inhibitors of ADA compared with 2 and 4, with K(i) values of 51-52 microM. Also, 3 is not a substrate of ADA. Nucleosides 3 and 4 also exhibit moderate in vitro activity against breast cancer cell lines, while all four are only minimally or nontoxic to the normal cells.


Assuntos
Inibidores de Adenosina Desaminase , Adenosina/análogos & derivados , Adenosina/síntese química , Imidazóis/química , Inosina/análogos & derivados , Inosina/síntese química , Piridazinas/química , Adenosina/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Inosina/farmacologia , Relação Estrutura-Atividade
11.
Nucleosides Nucleotides Nucleic Acids ; 24(10-12): 1775-88, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16438047

RESUMO

The attempted synthesis of a ring-expanded guanosine (1) containing the imidazo[4,5-e][1,3]diazepine ring system by condensation of 1-(2'-deoxy-beta-D-erythropentofuranosyl)-4-ethoxycarbonylimidazole-5-carbaldehyde (2) with guanidine resulted in the formation of an unexpected product, 1-(2'-deoxy-beta-D-erythropentofuranosyl)-5-(2, 4-diamino-3, 6-dihydro-1,3, 5-triazin-6-yl)imidazole-4-carboxamide (7). The structure as well as the pathway of formation of 7 was corroborated by isolation of the intermediate, followed by its conversion to the product. Nucleoside 7 showed promising in vitro anti-helicase activity against the West Nile virus NTPase/helicase with an IC50 of 3-10 microg/mL.


Assuntos
Antivirais/síntese química , Imidazóis/química , RNA Helicases/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Vírus do Nilo Ocidental/enzimologia , Antivirais/química , Relação Dose-Resposta a Droga , Guanosina/análogos & derivados , Guanosina/química , Imidazóis/síntese química , Nucleosídeo-Trifosfatase/antagonistas & inibidores , Nucleosídeo-Trifosfatase/química , RNA Helicases/química , Proteínas Virais/química
12.
Oncotarget ; 6(30): 29901-13, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26337079

RESUMO

DDX3X (DDX3), a human RNA helicase, is over expressed in multiple breast cancer cell lines and its expression levels are directly correlated to cellular aggressiveness. NZ51, a ring-expanded nucleoside analogue (REN) has been reported to inhibit the ATP dependent helicase activity of DDX3. Molecular modeling of NZ51 binding to DDX3 indicated that the 5:7-fused imidazodiazepine ring of NZ51 was incorporated into the ATP binding pocket of DDX3. In this study, we investigated the anticancer properties of NZ51 in MCF-7 and MDA-MB-231 breast cancer cell lines. NZ51 treatment decreased cellular motility and cell viability of MCF-7 and MDA-MB-231 cells with IC50 values in the low micromolar range. Biological knockdown of DDX3 in MCF-7 and MDA-MB-231 cells resulted in decreased proliferation rates and reduced clonogenicity. In addition, NZ51 was effective in killing breast cancer cells under hypoxic conditions with the same potency as observed during normoxia. Mechanistic studies indicated that NZ51 did not cause DDX3 degradation, but greatly diminished its functionality. Moreover, in vivo experiments demonstrated that DDX3 knockdown by shRNA resulted in reduced tumor volume and metastasis without altering tumor vascular volume or permeability-surface area. In initial in vivo experiments, NZ51 treatment did not significantly reduce tumor volume. Further studies are needed to optimize drug formulation, dose and delivery. Continuing work will determine the in vitro-in vivo correlation of NZ51 activity and its utility in a clinical setting.


Assuntos
Azepinas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , RNA Helicases DEAD-box/antagonistas & inibidores , Nucleosídeos/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Azepinas/química , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Humanos , Immunoblotting , Células MCF-7 , Camundongos Nus , Estrutura Molecular , Nucleosídeos/química , Interferência de RNA , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
EMBO Mol Med ; 7(5): 648-69, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25820276

RESUMO

Lung cancer is the most common malignancy worldwide and is a focus for developing targeted therapies due to its refractory nature to current treatment. We identified a RNA helicase, DDX3, which is overexpressed in many cancer types including lung cancer and is associated with lower survival in lung cancer patients. We designed a first-in-class small molecule inhibitor, RK-33, which binds to DDX3 and abrogates its activity. Inhibition of DDX3 by RK-33 caused G1 cell cycle arrest, induced apoptosis, and promoted radiation sensitization in DDX3-overexpressing cells. Importantly, RK-33 in combination with radiation induced tumor regression in multiple mouse models of lung cancer. Mechanistically, loss of DDX3 function either by shRNA or by RK-33 impaired Wnt signaling through disruption of the DDX3-ß-catenin axis and inhibited non-homologous end joining-the major DNA repair pathway in mammalian somatic cells. Overall, inhibition of DDX3 by RK-33 promotes tumor regression, thus providing a compelling argument to develop DDX3 inhibitors for lung cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Azepinas/farmacologia , RNA Helicases DEAD-box/antagonistas & inibidores , Imidazóis/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Radiossensibilizantes/farmacologia , Animais , Antineoplásicos/isolamento & purificação , Apoptose , Azepinas/isolamento & purificação , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Humanos , Imidazóis/isolamento & purificação , Camundongos Nus , Camundongos Transgênicos , Radiossensibilizantes/isolamento & purificação
14.
Curr Top Med Chem ; 2(10): 1093-109, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12173969

RESUMO

Ring-expanded (ldauo;fat") nucleosides (RENs) described in this review are analogues of purine nucleosides containing a 5:7-fused imidazodiazepine or imidazotriazepine ring system. They are both of natural and synthetic origin, and are of chemical, biochemical, biophysical, as well as medicinal interest. The important natural RENs include coformycin, pentostatin, azepinomycin, adechlorin, and adecypenol. A majority of them are synergistic antitumor and/or antiviral antibiotics which potentiate the effects of other antitumor or antiviral compounds through inhibition of key enzymes such as adenosine deaminase or guanase which would otherwise metabolically degrade the active compounds into therapeutically less potent or totally inactive counterparts. However, despite the fact that some of the natural RENs such as coformycins are the strongest known enzyme inhibitors, they have not been proven as effective clinically as anticipated because of the extremely high toxicity associated with their use. Nevertheless, pentostatin (2'-deoxycoformycin) is a conspicuous exception as it is gaining wide attention in recent years as a clinically effective therapeutic agent against leukemias and lymphomas. Many of the recently reported synthetic RENs, by contrast, possess biological activities of their own, in particular against a wide spectrum of cancers and viruses with little toxicity to the host cells, and thus hold considerable promise as chemotherapeutic agents. The promising preliminary in vitro data concerning the effects of RENs on human cancers, in particular prostate and breast cancer cells, support their further pursuit in animal and clinical studies. RENs also carry promise against many viral infections belonging to the families of hepatitis, herpes, and respiratory infections, most notable being the hepatitis B (HBV), hepatitis C (HCV), and the West Nile (WNV) viruses.


Assuntos
Antineoplásicos/química , Antivirais/química , Nucleosídeos de Purina/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Azepinas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Nucleosídeos de Purina/farmacologia , Nucleosídeos de Purina/uso terapêutico , Relação Estrutura-Atividade , Triazenos
15.
J Med Chem ; 47(4): 1044-50, 2004 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-14761206

RESUMO

As part of a program to explore structure-activity relationships for the extremely tight binding inhibition characteristics of coformycins to adenosine deaminase, a series of analogues (1a-1h) containing the imidazo[4,5-e][1,2,4]triazepine ring system has been synthesized and screened in vitro against a mammalian adenosine deaminase for inhibitory activity. While compounds 1a and 1b were synthesized in five steps starting from 4-nitroimidazole, others were derived from 1a through simple exchange reactions with the appropriate alcohols. The observed kinetics profiles and K(i) values suggest that the target compounds are competitive inhibitors that bind 6-9 orders of magnitude less tightly to the enzyme. Compounds 1c and 1d were the most active in the series with K(i)'s ranging from 12 to 15 microM.


Assuntos
Inibidores de Adenosina Desaminase , Azepinas/síntese química , Imidazóis/síntese química , Adenosina/química , Adenosina Desaminase/química , Animais , Azepinas/química , Bovinos , Hidrólise , Imidazóis/química , Cinética , Relação Estrutura-Atividade
16.
J Med Chem ; 47(24): 5847-59, 2004 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-15537342

RESUMO

Bis[2-(4-phosphonooxyphenoxy)carbonylethyl]phosphinc acid (BPPCEP) was prepared and evaluated as a site-directed affinity reagent for cross-linking human hemoglobin. It was synthesized in four steps starting from 4-benzyloxyphenol and was converted to its pentasodium salt so as to afford efficient cross-linking in an aqueous medium. The reagent was found to specifically cross-link human hemoglobin A(0) in the beta-cleft chains under oxygenated reaction conditions at neutral pH. The amino acid residues involved in the cross-linking were determined by mass spectral analyses of tryptic digest fragments of cross-linked hemoglobin, employing a MALDI-TOF mass spectrometer. The MS analyses suggested that the most likely amino acids involved in the cross-links are Val-1 or Lys-82 present on one of the beta subunits and Lys-82 or Lys-144 on the other. Molecular modeling studies performed on the reagent-HbA(0) complex corroborated the conclusions reached by MALDI-MS analyses. The oxygen equilibrium measurements of the three major BPPCEP-cross-linked Hb products, isolated and purified by preparative cation exchange chromatography, exhibited oxygen affinity (P(50)) values of 14.5, 12.1, and 15.5 Torr as compared with the P(50) of 13.1 Torr for cell-free hemoglobin. The oxygen-binding cooperativity of the modified products, as determined by the Hill coefficient generated from the Hill plots of the respective P(50) values, coupled with the absence of sigmoidal shape of the O(2) equilibrium curves, was considerably lower than that of the native hemoglobin.


Assuntos
Reagentes de Ligações Cruzadas/síntese química , Hemoglobinas/química , Organofosfatos/síntese química , Organofosfonatos/síntese química , Ácidos Fosfínicos/síntese química , Reagentes de Ligações Cruzadas/química , Humanos , Modelos Moleculares , Organofosfatos/química , Organofosfonatos/química , Oxigênio/química , Mapeamento de Peptídeos , Ácidos Fosfínicos/química , Ligação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
J Med Chem ; 46(22): 4776-89, 2003 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-14561097

RESUMO

A series of ring-expanded ("fat") nucleoside analogues (RENs) containing the 6-aminoimidazo[4,5-e][1,3]diazepine-4,8-dione ring system have been synthesized and screened for inhibition of NTPase/helicase of the West Nile Virus (WNV). To assess the selectivity of RENs against the viral enzymes, a truncated form of human enzyme Suv3((Delta)(1)(-)(159)) was also included in the study. Ring-expanded nucleosides 16, 17, and 19, which possess the long C(12), C(14), and C(18) side-chains, respectively, at position 6, as well as the ring-expanded heterocycle 39, which contains aralkyl substitution at position 1, were all found to have excellent profiles of activity and selectivity toward the viral versus human enzymes against the West Nile Virus (IC(50) ranging 1-10 muM). Compound 30, while being an equally potent inhibitor of WNV, was found to be somewhat less selective, whereas compound 36, which is an alpha-anomeric counterpart of 30, exhibited potent and selective inhibition of WNV (IC(50) 1-3 muM). The same compounds that showed potent inhibition of viral helicase activity completely failed to show any activity against the viral NTPase reaction even up to 500 muM. However, at concentrations >500 muM of RENs and the ATP concentrations >10 times the K(m) value of the enzyme, a significant activation of NTPase activity was observed. This activating effect underwent further dramatic enhancement (>1000%) by further increases in ATP concentration in the reaction mixture, suggesting that the viral helicase and NTPase reactions are not coupled. A tentative mechanistic model has been proposed to explain the observed results.


Assuntos
Hidrolases Anidrido Ácido/antagonistas & inibidores , Antivirais/síntese química , Nucleosídeos/síntese química , RNA Helicases/antagonistas & inibidores , Vírus do Nilo Ocidental/enzimologia , Hidrolases Anidrido Ácido/química , Adenosina Trifosfatases/antagonistas & inibidores , Antivirais/química , Humanos , Conformação Molecular , Nucleosídeo-Trifosfatase , Nucleosídeos/química , RNA Helicases/química , Relação Estrutura-Atividade
18.
J Med Chem ; 46(19): 4149-64, 2003 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-12954067

RESUMO

A series of ring-expanded ("fat") heterocycles, nucleoside and nucleotide analogues (RENs) containing the imidazo[4,5-e][1,3]diazepine ring system (9, 14, 15, 18, 24-26, 28, 31, and 33) and imidazo[4,5-e][1,2,4]triazepine ring systems (30b, 30c, 32, and 34), have been synthesized as potential inhibitors of NTPases/helicases of Flaviviridae, including the West Nile virus (WNV), hepatitis C virus (HCV), and Japanese encephalitis virus (JEV). An amino-terminal truncated form of human enzyme Suv3(delta1-159) was also included in the study so as to assess the selectivity of RENs against the viral enzymes. The analogues of RENs included structural variations at position 1 of the heterocyclic base and contained changes in both the type of sugar moieties (ribo, 2'-deoxyribo, and acyclic sugars) and the mode of attachment (alpha versus beta anomeric configuration) of those sugars to the heterocyclic base. The target RENs were biochemically screened separately against the helicase and ATPase activities of the viral NTPases/helicases. A number of RENs inhibited the viral helicase activity with IC50 values that ranged in micromolar concentrations and exhibited differential selectivity between the viral enzymes. In view of the observed tight complex between some nucleosides and RNA and/or DNA substrates of a helicase, the mechanism of action of RENs might involve their interaction with the appropriate substrate through binding to the major or minor groove of the double helix. The REN-5'-triphosphates, on the other hand, did not influence the above unwinding reaction, but instead exerted the inhibitory effect on the ATPase activity of the enzymes. The activity was found to be highly dependent upon the low concentration levels of the substrate ATP. At concentrations >500 microM of RENs and the ATP concentrations >10 times the Km value of the enzyme, a significant activation of NTPase activity was observed. This activating effect underwent further dramatic enhancement (>1000%) by further increases in ATP concentration in the reaction mixture. A tentative mechanistic model has been proposed to explain the observed results, which includes an additional allosteric binding site on the viral NTPases/helicases that can be occupied by nucleoside/nucleotide-type molecules such as RENs.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , DNA Helicases/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Flaviviridae/enzimologia , Nucleosídeos/química , Nucleosídeos/farmacologia , Nucleotídeos/química , Nucleotídeos/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Azepinas/química , Azepinas/farmacologia , DNA/metabolismo , DNA Helicases/química , Vírus da Encefalite Japonesa (Espécie)/enzimologia , Hepacivirus/enzimologia , Humanos , Concentração Inibidora 50 , Nucleosídeos/síntese química , Nucleotídeos/síntese química , Poliproteínas/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Vírus do Nilo Ocidental/enzimologia
19.
Antiviral Res ; 63(3): 209-15, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15451189

RESUMO

This report describes the application of real-time PCR for testing antivirals against highly pathogenic viruses such as Lassa virus, SARS coronavirus and Ebola virus. The test combines classical cell culture with a quantitative real-time PCR read-out. The assay for Lassa virus was validated with ribavirin, which showed an IC(50) of 9 micrograms/ml. Small-scale screening identified a class of imidazole nucleoside/nucleotide analogues with antiviral activity against Lassa virus. The analogues contained either dinitrile or diester groups at the imidazole 4,5-positions, and many of which possessed an acyclic sugar or sugar phosphonate moiety at the imidazole 1-position. The IC(50) values of the most active compounds ranged from 5 to 21 micrograms/ml. The compounds also inhibited replication of SARS coronavirus and Ebola virus in analogous assays, although to a lesser extent than Lassa virus.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Vírus Lassa/efeitos dos fármacos , RNA Viral/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Quimioterapia Combinada , Imidazóis/síntese química , Imidazóis/química , Nucleosídeos/síntese química , Nucleosídeos/química , Reação em Cadeia da Polimerase/métodos , RNA Viral/análise
20.
Antiviral Res ; 53(2): 159-64, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11750942

RESUMO

Novel ring-expanded nucleoside (REN) analogs (1-3) containing 5:7 fused ring systems as the heterocyclic base were found to be potent and selective inhibitors of hepatitis B virus (HBV) replication in cultured human hepatoblastoma 2.2.15 cells. The most active compound, 6-amino-4,5-dihydro-8H-1-(beta-D-ribofuranosyl)imidazo[4,5-e][1,3]diazepine-4,8-dione (1), inhibited the synthesis of intracellular HBV replication intermediates and extracellular virion release in 2.2.15 cells with 50% effective concentration (EC50) of 0.604 and 0.131 microM, respectively. All three compounds had no effect on the synthesis of viral ribonucleic acids (RNA) in 2.2.15 cells. These compounds also exhibited low cellular toxicity in stationary and rapidly growing cell systems.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Nucleosídeos/química , Nucleosídeos/farmacologia , Replicação Viral/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Hepatite B/virologia , Vírus da Hepatite B/fisiologia , Hepatoblastoma , Humanos , Neoplasias Hepáticas , Nucleosídeos/síntese química , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA