Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Genet ; 60(11): 1067-1075, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37197785

RESUMO

PURPOSE: Pulmonary disease is the major cause of morbidity and mortality in osteogenesis imperfecta (OI). We investigated the contribution of intrinsic lung factors to impaired pulmonary function in children and young adults with OI types III, IV, VI. METHODS: Patients with type III (n=8), IV (n=21), VI (n=5), VII (n=2) or XIV (n=1) OI (mean age 23.6 years) prospectively underwent pulmonary function tests (PFTs) and thoracic CT and radiographs. RESULTS: PFT results were similar using arm span or ulnar length as height surrogates. PFTs were significantly lower in type III than type IV or VI OI. All patients with type III and half of type IV OI had lung restriction; 90% of patients with OI had reduced gas exchange. Patients with COL1A1 variants had significantly lower forced expiratory flow (FEF)25%-75% compared with those with COL1A2 variants. PFTs correlated negatively with Cobb angle or age. CT scans revealed small airways bronchial thickening (100%, 86%, 100%), atelectasis (88%, 43%, 40%), reticulations (50%, 29%, 20%), ground glass opacities (75%, 5%, 0%), pleural thickening (63%, 48%, 20%) or emphysema (13%, 19%, 20%) in type III, IV or VI OI, respectively. CONCLUSION: Both lung intrinsic and extrinsic skeletal abnormalities contribute to OI pulmonary dysfunction. Most young adult patients have restrictive disease and abnormal gas exchange; impairment is greater in type III than type IV OI. Decreased FEF25%-75% and thickening of small bronchi walls indicate a critical role for small airways. Lung parenchymal abnormalities (atelectasis, reticulations) and pleural thickening were also detected. Clinical interventions to mitigate these impairments are warranted. TRIAL REGISTRATION NUMBER: NCT03575221.

2.
Mol Genet Metab ; 137(1-2): 187-191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36088816

RESUMO

Pulmonary fibrosis is a progressive and often fatal lung disease that manifests in most patients with Hermansky-Pudlak syndrome (HPS) type 1. Although the pathobiology of HPS pulmonary fibrosis is unknown, several studies highlight the pathogenic roles of different cell types, including type 2 alveolar epithelial cells, alveolar macrophages, fibroblasts, myofibroblasts, and immune cells. Despite the identification of the HPS1 gene and progress in understanding the pathobiology of HPS pulmonary fibrosis, specific treatment for HPS pulmonary fibrosis is not available, emphasizing the need to identify cellular and molecular targets and to develop therapeutic strategies for this devastating disease. This commentary summarizes recent advances and aims to provide insights into gene therapy for HPS pulmonary fibrosis.


Assuntos
Síndrome de Hermanski-Pudlak , Fibrose Pulmonar , Humanos , Síndrome de Hermanski-Pudlak/genética , Síndrome de Hermanski-Pudlak/terapia , Síndrome de Hermanski-Pudlak/metabolismo , Fibrose Pulmonar/genética , Fibrose Pulmonar/terapia , Pulmão/patologia , Terapia Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA