Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(2): 023202, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505939

RESUMO

Bulk-edge correspondence, with quantized bulk topology leading to protected edge states, is a hallmark of topological states of matter and has been experimentally observed in electronic, atomic, photonic, and many other systems. While bulk-edge correspondence has been extensively studied in Hermitian systems, a non-Hermitian bulk could drastically modify the Hermitian topological band theory due to the interplay between non-Hermiticity and topology, and its effect on bulk-edge correspondence is still an ongoing pursuit. Importantly, including non-Hermicity can significantly expand the horizon of topological states of matter and lead to a plethora of unique properties and device applications, an example of which is a topological laser. However, the bulk topology, and thereby the bulk-edge correspondence, in existing topological edge-mode lasers is not well defined. Here, we propose and experimentally probe topological edge-mode lasing with a well-defined non-Hermitian bulk topology in a one-dimensional (1D) array of coupled ring resonators. By modeling the Hamiltonian with an additional degree of freedom (referred to as synthetic dimension), our 1D structure is equivalent to a 2D non-Hermitian Chern insulator with precise mapping. Our Letter may open a new pathway for probing non-Hermitian topological effects and exploring non-Hermitian topological device applications.

2.
Phys Rev Lett ; 127(13): 130401, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34623847

RESUMO

The scope of analog simulation in atomic, molecular, and optical systems has expanded greatly over the past decades. Recently, the idea of synthetic dimensions-in which transport occurs in a space spanned by internal or motional states coupled by field-driven transitions-has played a key role in this expansion. While approaches based on synthetic dimensions have led to rapid advances in single-particle Hamiltonian engineering, strong interaction effects have been conspicuously absent from most synthetic dimensions platforms. Here, in a lattice of coupled atomic momentum states, we show that atomic interactions result in large and qualitative changes to dynamics in the synthetic dimension. We explore how the interplay of nonlinear interactions and coherent tunneling enriches the dynamics of a one-band tight-binding model giving rise to macroscopic self-trapping and phase-driven Josephson dynamics with a nonsinusoidal current-phase relationship, which can be viewed as stemming from a nonlinear band structure arising from interactions.

3.
Phys Rev Lett ; 124(7): 073603, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32142317

RESUMO

Hyperbolic metamaterials (HMMs), an unusual class of electromagnetic metamaterials, have found important applications in various fields due to their distinctive properties. A surprising feature of HMMs is that even continuous HMMs can possess topological edge modes. However, previous studies based on equal-frequency surface (analogy of Fermi surface) may not correctly capture the topology of entire bands. Here we develop a topological band description for continuous HMMs that can be described by a non-Hermitian Hamiltonian formulated from Maxwell's equations. We find two types of three-dimensional non-Hermitian triply degenerate points with complex linear dispersions and topological charges ±2 and 0 induced by chiral and gyromagnetic effects. Because of the photonic nature, the vacuum band plays an important role for topological edge states and bulk-edge correspondence in HMMs. The topological band results are numerically confirmed by direct simulation of Maxwell's equations. Our work presents a general non-Hermitian topological band treatment of continuous HMMs, paving the way for exploring interesting topological phases in photonic continua and device implementations of topological HMMs.

4.
Phys Rev Lett ; 124(22): 227001, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32567912

RESUMO

Second-order topological superconductors host Majorana corner and hinge modes in contrast to conventional edge and surface modes in two and three dimensions. However, the realization of such second-order corner modes usually demands unconventional superconducting pairing or complicated junctions or layered structures. Here we show that Majorana corner modes could be realized using a 2D quantum spin Hall insulator in proximity contact with an s-wave superconductor and subject to an in-plane Zeeman field. Beyond a critical value, the in-plane Zeeman field induces opposite effective Dirac masses between adjacent boundaries, leading to one Majorana mode at each corner. A similar paradigm also applies to 3D topological insulators with the emergence of Majorana hinge states. Avoiding complex superconductor pairing and material structure, our scheme provides an experimentally realistic platform for implementing Majorana corner and hinge states.

5.
Phys Rev Lett ; 120(6): 060407, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29481243

RESUMO

A quasicrystal is a class of ordered structures defying conventional classification of solid crystals and may carry classically forbidden (e.g., fivefold) rotational symmetries. In view of long-sought supersolids, a natural question is whether a superfluid can spontaneously form quasicrystalline order that is not possessed by the underlying Hamiltonian, forming "superfluid-quasicrystals." Here we show that a superfluid-quasicrystal stripe state with the minimal fivefold rotational symmetry can be realized as the ground state of a Bose-Einstein condensate within a practical experimental scheme. There exists a rich phase diagram consisting of various superfluid-quasicrystal, supersolid, and plane-wave phases. Our scheme can be generalized for generating other higher-order (e.g., sevenfold) quasicrystal states, and provides a platform for investigating such new exotic quantum matter.

6.
Phys Rev Lett ; 120(24): 240401, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29956976

RESUMO

The recent discovery of triply degenerate points (TDPs) in topological materials has opened a new perspective toward the realization of novel quasiparticles without counterparts in quantum field theory. The emergence of such protected nodes is often attributed to spin-vector-momentum couplings. We show that the interplay between spin-tensor- and spin-vector-momentum couplings can induce three types of TDPs, classified by different monopole charges (C=±2, ±1, 0). A Zeeman field can lift them into Weyl points with distinct numbers and charges. Different TDPs of the same type are connected by intriguing Fermi arcs at surfaces, and transitions between different types are accompanied by level crossings along high-symmetry lines. We further propose an experimental scheme to realize such TDPs in cold-atom optical lattices. Our results provide a framework for studying spin-tensor-momentum coupling-induced TDPs and other exotic quasiparticles.

7.
Phys Rev Lett ; 120(12): 120401, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29694081

RESUMO

The Josephson effect is a prominent phenomenon of quantum supercurrents that has been widely studied in superconductors and superfluids. Typical Josephson junctions consist of two real-space superconductors (superfluids) coupled through a weak tunneling barrier. Here we propose a momentum-space Josephson junction in a spin-orbit coupled Bose-Einstein condensate, where states with two different momenta are coupled through Raman-assisted tunneling. We show that Josephson currents can be induced not only by applying the equivalent of "voltages," but also by tuning tunneling phases. Such tunneling-phase-driven Josephson junctions in momentum space are characterized through both full mean field analysis and a concise two-level model, demonstrating the important role of interactions between atoms. Our scheme provides a platform for experimentally realizing momentum-space Josephson junctions and exploring their applications in quantum-mechanical circuits.

8.
J Cancer Res Clin Oncol ; 150(4): 194, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619631

RESUMO

PURPOSE: Kidney clear cell carcinoma (KIRC) has a poor prognosis, high morbidity and mortality rates, and high invasion and metastasis rate, and effective therapeutic targets are lacking. zDHHC3 has been implicated in various cancers, but its specific role in KIRC remains unclear. METHODS: In this study, we performed a pan-cancer analysis, bioinformatics analysis, and cell experiment to detect the role of zDHHC3 in KIRC. RESULTS: zDHHC3 was significantly down-regulated in KIRC, and that its high expression was associated with favorable patient outcomes. We identified 202 hub genes that were most relevant to high zDHHC3 expression and KIRC, and found that they were involved mainly in ion transport and renal cell carcinoma. Among these hub genes, SLC9A2 was identified as a downstream gene of zDHHC3. zDHHC3 suppression led to decreased expression and S-palmitoylation of SLC9A2, which further inhibited the apoptosis of Caki-2 cells. CONCLUSION: Our findings suggest that zDHHC3 plays an important role in KIRC, due partly to its regulation of SLC9A2 S-palmitoylation. The targeting of the zDHHC3-SLC9A2 axis may provide a new option for the clinical treatment of KIRC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Apoptose , Carcinoma de Células Renais/genética , Rim , Neoplasias Renais/genética , Lipoilação
9.
Materials (Basel) ; 15(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36013824

RESUMO

The relationship between the various phases of asphalt materials, from asphalt binder to mastic and mixture, has received great attention over the years, with efforts being made to establish linkages among these phases. Many methods for predicting the rheology properties of asphalt mastics from those of asphalt and filler volume fractions exist. However, most prediction methods are based on an empirical formula and on the micromechanical model. Very few research studies focus on the constitutive model. In addition, relatively little research has explored the influence of asphalt-filler interaction on mastic's rheology properties, which is believed to be an important factor. In this study, the 2S2P1D (two springs, two parabolic elements, and one dashpot) model was applied to link the behavior of asphalt binder, filler volume fraction, asphalt-filler interaction and asphalt mastic. First, the interaction between asphalt and filler was evaluated, and the interaction parameter C of the Palierne model was used as an assessment indicator to calculate the effective filler volume fraction of asphalt mastic. Then, the relation between the 2S2P1D model parameters of asphalt mastic and those of asphalt binder and the effective filler volume fraction was analyzed. Finally, a simple relationship associating the 2S2P1D model parameters h, log(τ0) of mastic and that of asphalt binder and the effective filler volume fraction was developed. The proposed expression was validated, and the result showed that it was an efficient model for the shear complex modulus prediction of virgin asphalt mastic.

10.
Micromachines (Basel) ; 11(4)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340189

RESUMO

Microcapsules are attractive core-shell configurations for studies of controlled release, biomolecular sensing, artificial microbial environments, and spherical film buckling. However, the production of microcapsules with ultra-thin shells remains a challenge. Here we develop a simple and practical osmolarity-controlled swelling method for the mass production of monodisperse microcapsules with ultra-thin shells via water-in-oil-in-water (W/O/W) double-emulsion drops templating. The size and shell thickness of the double-emulsion drops are precisely tuned by changing the osmotic pressure between the inner cores and the suspending medium, indicating the practicability and effectiveness of this swelling method in tuning the shell thickness of double-emulsion drops and the resultant microcapsules. This method enables the production of microcapsules even with an ultra-thin shell less than hundreds of nanometers, which overcomes the difficulty in producing ultra-thin-shell microcapsules using the classic microfluidic emulsion technologies. In addition, the ultra-thin-shell microcapsules can maintain their intact spherical shape for up to 1 year without rupturing in our long-term observation. We believe that the osmolarity-controlled swelling method will be useful in generating ultra-thin-shell polydimethylsiloxane (PDMS) microcapsules for long-term encapsulation, and for thin film folding, buckling and rupturing investigation.

11.
Nat Commun ; 10(1): 3381, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358742

RESUMO

Controlling magnetism through non-magnetic means is highly desirable for future electronic devices, as such means typically have ultra-low power requirements and can provide coherent control. In recent years, great experimental progress has been made in the field of electrical manipulation of magnetism in numerous material systems. These studies generally do not consider the directionality of the applied non-magnetic potentials and/or magnetism switching. Here, we theoretically conceive and experimentally demonstrate a non-magnetic one-way spin switch device using a spin-orbit coupled Bose-Einstein condensate subjected to a moving spin-independent repulsive dipole potential. The physical foundation of this unidirectional device is based on the breakdown of Galilean invariance in the presence of spin-orbit coupling. Such a one-way spin switch opens an avenue for designing quantum devices with unique functionalities and may facilitate further experimental investigations of other one-way spintronic and atomtronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA