Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Neuroinflammation ; 19(1): 191, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858866

RESUMO

Sialic acid immunoglobulin-like lectin E (Siglec-E) is a subtype of pattern recognition receptors found on the surface of myeloid cells and functions as a key immunosuppressive checkpoint molecule. The engagement between Siglec-E and the ligand α2,8-linked disialyl glycans activates the immunoreceptor tyrosine-based inhibitory motif (ITIM) in its intracellular domain, mitigating the potential risk of autoimmunity amid innate immune attacks on parasites, bacteria, and carcinoma. Recent studies suggest that Siglec-E is also expressed in the CNS, particularly microglia, the brain-resident immune cells. However, the functions of Siglec-E in brain inflammation and injuries under many neurological conditions largely remain elusive. In this study, we first revealed an anti-inflammatory role for Siglec-E in lipopolysaccharide (LPS)-triggered microglial activation. We then found that Siglec-E was induced within the brain by systemic treatment with LPS in mice in a dose-dependent manner, while its ablation exacerbated hippocampal reactive microgliosis in LPS-treated animals. The genetic deficiency of Siglec-E also aggravated oxygen-glucose deprivation (OGD)-induced neuronal death in mouse primary cortical cultures containing both neurons and glial cells. Moreover, Siglec-E expression in ipsilateral brain tissues was substantially induced following middle cerebral artery occlusion (MCAO). Lastly, the neurological deficits and brain infarcts were augmented in Siglec-E knockout mice after moderate MCAO when compared to wild-type animals. Collectively, our findings suggest that the endogenous inducible Siglec-E plays crucial anti-inflammatory and neuroprotective roles following ischemic stroke, and thus might underlie an intrinsic mechanism of resolution of inflammation and self-repair in the brain.


Assuntos
Encefalite , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Animais , Encefalite/patologia , Infarto da Artéria Cerebral Média/patologia , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
2.
Epilepsia ; 63(4): 1003-1015, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35179226

RESUMO

OBJECTIVE: As a key member of the transient receptor potential (TRP) superfamily, TRP canonical 3 (TRPC3) regulates calcium homeostasis and contributes to neuronal excitability. Ablation of TRPC3 lessens pilocarpine-induced seizures in mice, suggesting that TRPC3 inhibition might represent a novel antiseizure strategy. Among current TRPC3 inhibitors, pyrazole 3 (Pyr3) is most selective and potent. However, Pyr3 only provides limited benefits in pilocarpine-treated mice, likely due to its low metabolic stability and potential toxicity. We recently reported a modified pyrazole compound 20 (or JW-65) that has improved stability and safety. The objective of this study was to explore the effects of TRPC3 inhibition by our current lead compound JW-65 on seizure susceptibility. METHODS: We first examined the pharmacokinetic properties including plasma half-life and brain to plasma ratio of JW-65 after systemic administration in mice. We then investigated the effects of TRPC3 inhibition by JW-65 on behavioral and electrographic seizures in mice treated with pilocarpine. To ensure our findings are not model specific, we assessed the susceptibility of JW-65-treated mice to pentylenetetrazole (PTZ)-induced seizures with phenytoin as a comparator. RESULTS: JW-65 showed adequate half-life and brain penetration in mice, justifying its use for central nervous system conditions. Systemic treatment with JW-65 before pilocarpine injection in mice markedly impaired the initiation of behavioral seizures. This antiseizure action was recapitulated when JW-65 was administered after pilocarpine-induced behavioral seizures were well established and was confirmed by time-locked electroencephalographic monitoring and synchronized video. Moreover, JW-65-treated mice showed substantially decreased susceptibility to PTZ-induced seizures in a dose-dependent manner. SIGNIFICANCE: These results suggest that pharmacological inhibition of the TRPC3 channels by our novel compound JW-65 might represent a new antiseizure strategy engaging a previously undrugged mechanism of action. Hence, this proof-of-concept study establishes TRPC3 as a novel feasible therapeutic target for the treatment of some forms of epilepsy.


Assuntos
Pentilenotetrazol , Pilocarpina , Animais , Modelos Animais de Doenças , Camundongos , Pentilenotetrazol/toxicidade , Pilocarpina/toxicidade , Pirazóis , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
3.
Exp Biol Med (Maywood) ; 248(9): 811-819, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37515545

RESUMO

The cyclooxygenase (COX)/prostaglandin E2 (PGE2) signaling pathway has emerged as a critical target for anti-inflammatory therapeutic development in neurological diseases. However, medical use of COX inhibitors in the treatment of various neurological disorders has been limited due to well-documented cardiovascular and cerebrovascular complications. It has been widely proposed that modulation of downstream microsomal prostaglandin E synthase-1 (mPGES-1) enzyme may provide more specificity for inhibiting PGE2-elicited neuroinflammation. Heightened levels of mPGES-1 have been detected in a variety of brain diseases such as epilepsy, stroke, glioma, and neurodegenerative diseases. Subsequently, elevated levels of PGE2, the enzymatic product of mPGES-1, have been demonstrated to modulate a multitude of deleterious effects. In epilepsy, PGE2 participates in retrograde signaling to augment glutamate release at the synapse leading to neuronal death. The excitotoxic demise of neurons incites the activation of microglia, which can become overactive upon further stimulation by PGE2. A selective mPGES-1 inhibitor was able to reduce gliosis and the expression of proinflammatory cytokines in the hippocampus following status epilepticus. A similar mechanism has also been observed in stroke, where the overactivation of microglia by PGE2 upregulated the expression and secretion of proinflammatory cytokines. This intense activation of neuroinflammatory processes triggered the secondary injury commonly observed in stroke, and blockade of mPGES-1 reduced infarction size and edema, suppressed induction of proinflammatory cytokines, and improved post-stroke well-being and cognition. Furthermore, elevated levels of PGE2 have been shown to intensify the proliferation of glioma cells, mediate P-glycoprotein expression at the blood-brain barrier (BBB) and facilitate breakdown of the BBB. For these reasons, targeting mPGES-1, the central and inducible enzyme of the COX cascade, may provide a more specific therapeutic strategy for treating neuroinflammatory diseases.


Assuntos
Epilepsia , Glioma , Acidente Vascular Cerebral , Humanos , Prostaglandina-E Sintases/metabolismo , Doenças Neuroinflamatórias , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Epilepsia/tratamento farmacológico , Citocinas
4.
J Craniofac Surg ; 23(3): 906-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22627402

RESUMO

The aim of this study was to find a surgical approach to a vertical segment of the facial nerve (VFN) with a relatively wide visual field and small lesion by studying the location and structure of VFN with cross-sectional anatomy. High-resolution spiral computed tomographic multiplane reformation was used to reform images that were parallel to the Frankfort horizontal plane. To locate the VFN, we measured the distances as follows: from the VFN to the paries posterior bony external acoustic meatus on 5 typical multiplane reformation images, to the promontorium tympani and the root of the tympanic ring on 2 typical images. The mean distances from the VFN to the paries posterior bony external acoustic meatus are as follows: 4.47 mm on images showing the top of the external acoustic meatus, 4.20 mm on images with the best view of the window niche, 3.35 mm on images that show the widest external acoustic meatus, 4.22 mm on images with the inferior margin of the sulcus tympanicus, and 5.49 mm on images that show the bottom of the external acoustic meatus. The VFN is approximately 4.20 mm lateral to the promontorium tympani on images with the best view of the window niche and 4.12 mm lateral to the root of the tympanic ring on images with the inferior margin of the sulcus tympanicus. The other results indicate that the area and depth of the surgical wound from the improved approach would be much smaller than that from the typical approach. The surgical approach to the horizontal segment of the facial nerve through the external acoustic meatus and the tympanic cavity could be improved by grinding off the external acoustic meatus to show the VFN. The VFN can be found by taking the promontorium tympani and tympanic ring as references. This improvement is of high potential to expand the visual field to the facial nerve, remarkably without significant injury to the patients compared with the typical approach through the mastoid process.


Assuntos
Nervo Facial/anatomia & histologia , Nervo Facial/cirurgia , Adulto , Anatomia Transversal , Descompressão Cirúrgica , Nervo Facial/diagnóstico por imagem , Paralisia Facial/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Interpretação de Imagem Radiográfica Assistida por Computador , Tomografia Computadorizada por Raios X
5.
Biomed Pharmacother ; 156: 113966, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411643

RESUMO

Neuroblastoma (NB) is the most common pediatric extracranial solid tumor arising from neural crest cells of the developing sympathetic nervous system. Despite marked advances in cancer treatment, the survival rate of high-risk NB remains unsatisfactory. As a key pro-inflammatory mediator regulating tumor microenvironment, prostaglandin E2 (PGE2) promotes NB proliferation, angiogenesis, and immune evasion via acting on four G protein-coupled receptors, particularly the EP2 subtype. Recent studies have been vigorously focused on developing and evaluating compounds targeting PGE2-regulated tumor inflammation in animal models of NB. In this review, we revisit these translational efforts and examine the feasibility of pharmacological inhibition of enzymes responsible for PGE2 biosynthesis or its signaling receptors as emerging therapeutic strategies for NB. We also explore the potential downstream oncogenic pathways upon the activation of PGE2 receptors, aiming to bridge the knowledge gap between tumorigenesis and the role of elevated PGE2/EP2 signaling, which is widely observed in high-risk NBs.


Assuntos
Dinoprostona , Neuroblastoma , Animais , Dinoprostona/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Receptores de Prostaglandina E , Transdução de Sinais , Microambiente Tumoral
6.
Cell Rep ; 39(12): 111000, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35732130

RESUMO

Prostaglandin E2 (PGE2) promotes tumor cell proliferation, migration, and invasion, fostering an inflammation-enriched microenvironment that facilitates angiogenesis and immune evasion. However, the PGE2 receptor subtype (EP1-EP4) involved in neuroblastoma (NB) growth remains elusive. Herein, we show that the EP2 receptor highly correlates with NB aggressiveness and acts as a predominant Gαs-coupled receptor mediating PGE2-initiated cyclic AMP (cAMP) signaling in NB cells with high-risk factors, including 11q deletion and MYCN amplification. Knockout of EP2 in NB cells blocks the development of xenografts, and its conditional knockdown prevents established tumors from progressing. Pharmacological inhibition of EP2 by our recently developed antagonist TG6-129 suppresses the growth of NB xenografts in nude mice and syngeneic allografts in immunocompetent hosts, accompanied by anti-inflammatory, antiangiogenic, and apoptotic effects. This proof-of-concept study suggests that the PGE2/EP2 signaling pathway contributes to NB malignancy and that EP2 inhibition by our drug-like compounds provides a promising strategy to treat this deadly pediatric cancer.


Assuntos
Neuroblastoma , Receptores de Prostaglandina E Subtipo EP2 , Animais , Dinoprostona/metabolismo , Humanos , Camundongos , Camundongos Knockout , Camundongos Nus , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Microambiente Tumoral
7.
Neurotherapeutics ; 19(1): 366-385, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35099767

RESUMO

As the inducible terminal enzyme for prostaglandin E2 (PGE2) synthesis, microsomal PGE synthase-1 (mPGES-1) contributes to neuroinflammation and secondary brain injury after cerebral ischemia via producing excessive PGE2. However, a proof of concept that mPGES-1 is a therapeutic target for ischemic stroke has not been established by a pharmacological strategy mainly due to the lack of drug-like mPGES-1 inhibitors that can be used in relevant rodent models. To this end, we recently developed a series of novel small-molecule compounds that can inhibit both human and rodent mPGES-1. In this study, blockade of mPGES-1 by our several novel compounds abolished the lipopolysaccharide (LPS)-induced PGE2 and pro-inflammatory cytokines interleukin 1ß (IL-1ß), IL-6, and tumor necrosis factor α (TNF-α) in mouse primary brain microglia. Inhibition of mPGES-1 also decreased PGE2 produced by neuronal cells under oxygen-glucose deprivation (OGD) stress. Among the five enzymes for PGE2 biosynthesis, mPGES-1 was the most induced one in cerebral ischemic lesions. Systemic treatment with our lead compound MPO-0063 (5 or 10 mg/kg, i.p.) in mice after transient middle cerebral artery occlusion (MCAO) improved post-stroke well-being, decreased infarction and edema, suppressed induction of brain cytokines (IL-1ß, IL-6, and TNF-α), alleviated locomotor dysfunction and anxiety-like behavior, and reduced the long-term cognitive impairments. The therapeutic effects of MPO-0063 in this proof-of-concept study provide the first pharmacological evidence that mPGES-1 represents a feasible target for delayed, adjunct treatment - along with reperfusion therapies - for acute brain ischemia.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Doenças do Sistema Nervoso , Animais , Isquemia Encefálica/tratamento farmacológico , Citocinas , Dinoprostona , Interleucina-6 , Camundongos , Prostaglandina-E Sintases , Fator de Necrose Tumoral alfa
8.
Biochem Pharmacol ; 184: 114363, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33309520

RESUMO

Overactive bladder (OAB) syndrome is a prevalent condition of the lower urinary tract that causes symptoms, such as urinary frequency, urinary urgency, urge incontinence, and nocturia, and disproportionately affects women and the elderly. Current medications for OAB merely provide symptomatic relief with considerable limitations, as they are no more than moderately effective, not to mention that they may cause substantial adverse effects. Identifying novel molecular targets to facilitate the development of new medical therapies with higher efficacy and safety for OAB is in an urgent unmet need. Although the molecular mechanisms underlying the pathophysiology of OAB largely remain elusive and are likely multifactorial, mounting evidence from preclinical studies over the past decade reveals that the pro-inflammatory pathways engaging cyclooxygenases and their prostanoid products, particularly the prostaglandin E2 (PGE2), may play essential roles in the progression of OAB. The goals of this review are to summarize recent progresses in our knowledge on the pathogenic roles of PGE2 in the OAB and to provide new mechanistic insights into the signaling pathways transduced by its four G-protein-coupled receptors (GPCRs), i.e., EP1-EP4, in the overactive detrusor smooth muscle. We also discuss the feasibility of targeting these GPCRs as an emerging strategy to treat OAB with better therapeutic specificity than the current medications.


Assuntos
Receptores de Prostaglandina E/metabolismo , Bexiga Urinária Hiperativa/tratamento farmacológico , Bexiga Urinária Hiperativa/metabolismo , Animais , Dinoprostona/metabolismo , Humanos , Prostaglandina-Endoperóxido Sintases/metabolismo , Bexiga Urinária/fisiologia
9.
J Med Chem ; 64(16): 11816-11836, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34352171

RESUMO

In the wake of health disasters associated with the chronic use of cyclooxygenase-2 (COX-2) inhibitor drugs, it has been widely proposed that modulation of downstream prostanoid synthases or receptors might provide more specificity than simply shutting down the entire COX cascade for anti-inflammatory benefits. The pathogenic actions of COX-2 have long been thought attributable to the prostaglandin E2 (PGE2) signaling through its Gαs-coupled EP2 receptor subtype; however, the truly selective EP2 antagonists did not emerge until 2011. These small molecules provide game-changing tools to better understand the EP2 receptor in inflammation-associated conditions. Their applications in preclinical models also reshape our knowledge of PGE2/EP2 signaling as a node of inflammation in health and disease. As we celebrate the 10-year anniversary of this breakthrough, the exploration of their potential as drug candidates for next-generation anti-inflammatory therapies has just begun. The first decade of EP2 antagonists passes, while their future looks brighter than ever.


Assuntos
Anti-Inflamatórios/uso terapêutico , Receptores de Prostaglandina E Subtipo EP2/antagonistas & inibidores , Animais , Anti-Inflamatórios/química , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/uso terapêutico , Descoberta de Drogas , Humanos
10.
ACS Pharmacol Transl Sci ; 3(4): 635-643, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32832866

RESUMO

Prostaglandin E2 (PGE2) is elevated in the brain by excitotoxic insults and, in turn, aggravates the neurotoxicity mainly through acting on its Gαs-coupled receptor EP2, inspiring a therapeutic strategy of targeting this key proinflammatory pathway. Herein, we investigated the effects of several highly potent and selective small-molecule antagonists of the EP2 receptor on neuronal excitotoxicity both in vitro and in vivo. EP2 inhibition by these novel compounds largely decreased the neuronal injury in rat primary hippocampal cultures containing both neurons and glia that were treated with N-methyl-d-aspartate and glycine. Using a bioavailable and brain-permeant analogue TG6-10-1 that we recently developed to target the central EP2 receptor, we found that the poststroke EP2 inhibition in mice decreased the neurological deficits and infarct volumes as well as downregulated the prototypic inflammatory cytokines in the brain after a transient ischemia. Our preclinical findings together reinforced the notion that targeting the EP2 receptor represents an emerging therapeutic strategy to prevent the neuronal injury and inflammation following ischemic stroke.

12.
J Cancer Res Ther ; 15(Supplement): S60-S68, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30900623

RESUMO

OBJECTIVE: To estimate association between androgen receptor (AR) gene polymorphisms and testicular germ cell tumor (TGCT) susceptibility. MATERIALS AND METHODS: Systematic search of studies on the association between AR gene polymorphisms and TGCT susceptibility was conducted. Odds ratios and 95% confidence intervals were used to pool effect size. RESULTS: For CAG repeat, no evidence was found for association between (>25 vs. ≤25), (>25 vs. 21-25), (<21 vs. 21-25), (others vs. 21-25), (>23 vs. ≤23), (<21 vs. ≥21), (<21 vs. ≥21)'s some subgroups and TGCT susceptibility, which showed stability. In (>24 vs. ≤24), (>24 vs. 21-24), (<21 vs. 21-24), and (others vs. 21-24) and almost all of their subgroups, increased TGCT risk was found without sensitivity analysis. For GGN, no statistical change of TGCT risk was found in (<23 vs. ≥23), (<23 vs. 23), which showed stability. For single nucleotide polymorphism (SNP) rs6152 G > A, rs1204038 G > A and rs2361634 A > G, no statistical change was found without sensitivity analysis. CONCLUSIONS: GGN repeat number <23 may not be associated with TGCTs susceptibility. However, there was insufficient data to fully confirm association in GGN repeat number >23, CAG repeat number, SNP rs6152, rs1204038, and rs2361634.


Assuntos
Predisposição Genética para Doença , Neoplasias Embrionárias de Células Germinativas/genética , Receptores Androgênicos/genética , Neoplasias Testiculares/genética , Repetições de Trinucleotídeos/genética , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
13.
Front Physiol ; 8: 245, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28503151

RESUMO

The urea transporter UT-B is widely expressed and has been studied in erythrocyte, kidney, brain and intestines. Interestingly, UT-B gene has been found more abundant in bladder than any other tissue. Recently, gene analyses demonstrate that SLC14A1 (UT-B) gene mutations are associated with bladder cancer, suggesting that urea transporter UT-B may play an important role in bladder carcinogenesis. In this study, we examined UT-B expression in bladder cancer with human primary bladder cancer tissues and cancer derived cell lines. Human UT-B has two isoforms. We found that normal bladder expresses long form of UT-B2 but was lost in 8 of 24 (33%) or significantly downregulated in 16 of 24 (67%) of primary bladder cancer patients. In contrast, the short form of UT-B1 lacking exon 3 was detected in 20 bladder cancer samples. Surprisingly, a 24-nt in-frame deletion in exon 4 in UT-B1 (UT-B1Δ24) was identified in 11 of 20 (55%) bladder tumors. This deletion caused a functional defect of UT-B1. Immunohistochemistry revealed that UT-B protein levels were significantly decreased in bladder cancers. Western blot analysis showed a weak UT-B band of 40 kDa in some tumors, consistent with UT-B1 gene expression detected by RT-PCR. Interestingly, bladder cancer associate UT-B1Δ24 was barely sialylated, reflecting impaired glycosylation of UT-B1 in bladder tumors. In conclusion, SLC14A1 gene and UT-B protein expression are significantly changed in bladder cancers. The aberrant UT-B expression may promote bladder cancer development or facilitate carcinogenesis induced by other carcinogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA