Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Plant Cell ; 36(4): 840-862, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38036296

RESUMO

Genetic load refers to the accumulated and potentially life-threatening deleterious mutations in populations. Understanding the mechanisms underlying genetic load variation of transposable element (TE) insertion, a major large-effect mutation, during range expansion is an intriguing question in biology. Here, we used 1,115 global natural accessions of Arabidopsis (Arabidopsis thaliana) to study the driving forces of TE load variation during its range expansion. TE load increased with range expansion, especially in the recently established Yangtze River basin population. Effective population size, which explains 62.0% of the variance in TE load, high transposition rate, and selective sweeps contributed to TE accumulation in the expanded populations. We genetically mapped and identified multiple candidate causal genes and TEs, and revealed the genetic architecture of TE load variation. Overall, this study reveals the variation in TE genetic load during Arabidopsis expansion and highlights the causes of TE load variation from the perspectives of both population genetics and quantitative genetics.


Assuntos
Arabidopsis , Elementos de DNA Transponíveis , Elementos de DNA Transponíveis/genética , Arabidopsis/genética , Genética Populacional , Evolução Molecular
2.
Acta Pharmacol Sin ; 45(2): 436-448, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37749238

RESUMO

Extracellular matrix metalloproteinase inducer CD147 is a glycoprotein on the cell surface. There is minimal expression of CD147 in normal epithelial and fetal tissues, but it is highly expressed in a number of aggressive tumors. CD147 has been implicated in pan-cancer immunity and progression. With the development of CD147-targeting therapeutic strategy, accurate detection of CD147 expression in tumors and its changes during the therapy is necessary. In this study we constructed a novel radiotracer by labeling the anti-CD147 mAb with radionuclide 124/125I (124/125I-anti-CD147) for noninvasive detection of CD147 expression in pan-cancers, and characterized its physicochemical properties, affinity, metabolic characteristics, biodistribution and immunoPET imaging with 124I-IgG and 18F-FDG as controls. By examining the expression of CD147 in cancer cell lines, we found high CD147 expression in colon cancer cells LS174T, FADU human pharyngeal squamous cancer cells and 22RV1 human prostate cancer cells, and low expression of CD147 in human pancreatic cancer cells ASPC1 and human gastric cancer cells BGC823. 124/125I-anti-CD147 was prepared using N-bromine succinimide (NBS) as oxidant and purified by PD-10 column. Its radiochemical purity (RCP) was over 99% and maintained over 85% in saline or 5% human serum albumin (HSA) for more than 7 d; the RCP of 125I-anti-CD147 in blood was over 90% at 3 h post injection (p.i.) in healthy mice. The Kd value of 125I-anti-CD147 to CD147 protein was 6.344 nM, while that of 125I-IgG was over 100 nM. 125I-anti-CD147 showed much greater uptake in CD147 high-expression cancer cells compared to CD147 low-expression cancer cells. After intravenous injection in healthy mice, 125I-anti-CD147 showed high initial uptake in blood pool and liver, the uptake was decreased with time. The biological half-life of distribution and clearance phases in healthy mice were 0.63 h and 19.60 h, respectively. The effective dose of 124I-anti-CD147 was estimated as 0.104 mSv/MBq. We conducted immunoPET imaging in tumor-bearing mice, and demonstrated a significantly higher tumor-to-muscle ratio of 124I-anti-CD147 compared to that of 124I-IgG and 18F-FDG in CD147 (+) tumors. The expression levels of CD147 in cells and tumors were positively correlated with the maximum standardized uptake value (SUVmax) (P < 0.01). In conclusion, 124/125I-anti-CD147 displays high affinity to CD147, and represents potential for the imaging of CD147-positive tumors. The development of 124I-anti-CD147 may provide new insights into the regulation of tumor microenvironment and formulation of precision diagnosis and treatment programs for tumors.


Assuntos
Fluordesoxiglucose F18 , Neoplasias da Próstata , Masculino , Humanos , Camundongos , Animais , Distribuição Tecidual , Compostos Radiofarmacêuticos , Radioisótopos do Iodo , Imunoglobulina G , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Small ; 19(9): e2205246, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36581560

RESUMO

Boosting charge separation and transfer of photoanodes is crucial for providing high viability of photoelectrochemical hydrogen (H2 ) generation. Here, a structural engineering strategy is designed and synthesized for uniformly coating an ultrathin CoFe bimetal-organic framework (CoFe MOF) layer over a BiVO4 photoanode for boosted charge separation and transfer. The photocurrent density of the optimized BiVO4 /CoFe MOF(NA) photoanode reaches a value of 3.92 mA cm-2 at 1.23 V versus reversible hydrogen electrode (RHE), up to 6.03 times that of pristine BiVO4 , due to the greatly increased efficiency of charge transfer and separation. In addition, this photoanode records one onset potential that is considerably shifted negatively when compared to BiVO4 . Transient absorption spectroscopy reveals that the CoFe MOF(NA) prolongs charge recombination lifetime by blocking the hole-transfer pathway from the BiVO4 to its surface trap states. This work sheds light on boosting charge separation and transfer through structural engineering to enhance the photocurrent of photoanodes for solar H2 production.

4.
Environ Res ; 217: 114981, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36460070

RESUMO

Excessive anthropogenic nutrient inputs often lead to the degradation of wetland ecosystems and a decrease in carbon sink capacity. Microbial-derived carbon is increasingly recognized as an important precursor for organic carbon formation, which is controlled by the balance between microbial anabolic and catabolic processes. Shifts in microbial metabolic investment under nutrient load disturbance are key, but understudied, components of microbial-derived carbon turnover. Here, the roles of the distinct life-history traits and cooperation degree of key microbial assemblies in regulating microbial-derived carbon accumulation in a wetland receiving treated wastewater were firstly assessed by combining microbial biomarkers and genomic approaches. It was found that microbial-derived carbon was an important source of organic carbon in wetlands, and strongly associated with several microbial assemblies with specific trait strategies. Further analysis demonstrated that high growth yield strategists were mainly associated with microbial necromass accrual, while microbial biomass was more dominated by resource acquisition strategies in nutrient-imbalanced wetlands. A significant positive relationship between positive cohesion and microbial-derived carbon indicated that cooperative behavior among taxa promoted the production and accumulation of microbial-derived carbon. Moreover, resource stoichiometric balance, including C:N and C:P, was identified as an important driver of shifts in microbial metabolic investment strategies. The decreased C:N ratio led to a shift from resource acquisition strategies to high growth yield strategies for the microbial community, which facilitated microbial necromass accrual along the N-limited wetland, while the increased C:P ratio caused by excessive P deposition in sediments limits microbial cooperative growth to some extent. This study highlighted the importance of stoichiometric balance in mediating microbial growth metabolism and, in turn, enhancing the carbon sink capacity of wetlands.


Assuntos
Microbiota , Áreas Alagadas , Carbono/metabolismo , Biomassa , Nutrientes , Solo
5.
Environ Res ; 223: 115473, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36787823

RESUMO

Inter-basin water transfer is an effective manner to achieve the optimal allocation of water resources, while accompanied by some ecological effects. The responses of microorganisms to water diversion and the ecological processes in regulating the community assembly are still unclear. Taking the eastern route of South-to-North Water Diversion Project as the study area, we investigated the microbial community patterns and the underlying assemblage processes in habitats with different hydrological connectivity, including isolated lakes, connected lakes and man-made canal. The results showed that microbial communities in the canal had higher diversity, lower dissimilarity, weaker compositional variation, and stronger co-occurrence patterns compared with that in the connected and isolated lakes. These findings suggested that the increase of connectivity among natural aquatic habitats due to water diversion can homogenize microbial communities and reduce microbial heterogeneity. The neutral and null models demonstrated the importance of stochastic processes in shaping microbial community assembly. Dispersal limitation and variable selection were the predominant mechanisms structuring microbial communities in the isolated lakes. Due to the homogenized environmental condition and the enhanced hydrologic connectivity in the canal and the connected lakes, microbial communities had higher dispersal capability and ecological drift occurred more frequently in these lotic habitats. The variations in microbial community structure were mainly driven by biotic ecological succession than abiotic factors, with positive and negative cohesion explained 63% and 25% of variability, respectively. Six taxa were considered as the potential introduced microorganisms, which may favor the nutrient biogeochemical cycling and the organic matter degradation, but may also bring ecological risks. Overall, this study provides a deeper understanding of the ecological consequences of inter-basin water diversion, and helps the regulation and management of these projects.


Assuntos
Microbiota , Água , Humanos , Lagos , Processos Estocásticos , Hidrologia
6.
Environ Res ; 228: 115778, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36997041

RESUMO

Wetting-drying alternation (WD) of the soil is one of the key characteristics of riparian zones shaped by dam construction, profoundly impacting the soil microenvironment that determines the bacterial community. Knowledge concerning the stability of bacterial community and N-cycling functions in response to different frequencies of WD remains unclear. In this study, samples were taken from a riparian zone in the Three Gorges Reservoir (TGR) and an incubation experiment was conducted including four treatments: constant flooding (W), varied wetting-drying alternation frequencies (WD1 and WD2), and constant drying (D) (simulating water level of 145 m, 155 m, 165 m, and 175 m in the riparian zone respectively). The results revealed that there was no significant difference in the diversity among the four treatments. Following the WD1 and WD2 treatments, the relative abundances of Proteobacteria increased, while those of Chloroflexi and Acidobacteriota decreased compared to the W treatment. However, the stability of bacterial community was not affected by WD. Relative to the W treatment, the stability of N-cycling functions estimated by resistance, which refers to the ability of functional genes to adapt to changes in the environment, decreased following the WD1 treatment, but showed no significant change following the WD2 treatment. Random forest analysis showed that the resistances of the nirS and hzo genes were core contributors to the stability of N-cycling functions. This study provides a new perspective for investigating the impacts of wetting-drying alternation on soil microbes.


Assuntos
Bactérias , Solo , Bactérias/genética , Água
7.
Small ; 18(7): e2103933, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34862712

RESUMO

Effective utilization of solar energy in battery systems is a promising solution to achieve sustainable and green development. In this work, a photoassisted Fe-air battery (PFAB) with two photoelectrodes of ZnO-TiO2 heterostructure and polyterthiophene (pTTh)-coated CuO (pTTh-CuO) grown on fluorine-doped tin oxide (FTO) is proposed. The band structure of semiconductors and the charge-transfer mechanism of heterostructure are studied. The electrochemical results show that the photogenerated electrons and holes play key roles in reducing the oxygen evolution reaction (OER)/oxygen reduction reaction (ORR) overpotential in the discharging and charging processes, respectively. The short-circuit current density, the open-circuit voltage, and the maximum power output of the PFAB can reach 34.28 mA cm-2 , 1.15 V, and 5.69 mW cm-2 upon illumination, respectively. The photoassisted Fe-air battery exhibits a low charge voltage of 0.64 V for ZnO-TiO2 as photoelectrode and a discharge voltage of 1.38 V for pTTh-CuO as a photoelectrode at 0.1 mA cm-2 .

8.
Proc Natl Acad Sci U S A ; 116(14): 6908-6913, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30877258

RESUMO

Rapid phenotypic changes in traits of adaptive significance are crucial for organisms to thrive in changing environments. How such phenotypic variation is achieved rapidly, despite limited genetic variation in species that experience a genetic bottleneck is unknown. Capsella rubella, an annual and inbreeding forb (Brassicaceae), is a great system for studying this basic question. Its distribution is wider than those of its congeneric species, despite an extreme genetic bottleneck event that severely diminished its genetic variation. Here, we demonstrate that transposable elements (TEs) are an important source of genetic variation that could account for its high phenotypic diversity. TEs are (i) highly enriched in C. rubella compared with its outcrossing sister species Capsella grandiflora, and (ii) 4.2% of polymorphic TEs in C. rubella are associated with variation in the expression levels of their adjacent genes. Furthermore, we show that frequent TE insertions at FLOWERING LOCUS C (FLC) in natural populations of C. rubella could explain 12.5% of the natural variation in flowering time, a key life history trait correlated with fitness and adaptation. In particular, we show that a recent TE insertion at the 3' UTR of FLC affects mRNA stability, which results in reducing its steady-state expression levels, to promote the onset of flowering. Our results highlight that TE insertions can drive rapid phenotypic variation, which could potentially help with adaptation to changing environments in a species with limited standing genetic variation.


Assuntos
Adaptação Fisiológica , Capsella , Elementos de DNA Transponíveis , Loci Gênicos , Variação Genética , Fenótipo , Capsella/genética , Capsella/metabolismo , Proteínas de Domínio MADS/biossíntese , Proteínas de Domínio MADS/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo
9.
Zhongguo Zhong Yao Za Zhi ; 47(3): 684-691, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35178951

RESUMO

Thirteen steroids(1-13) were isolated from the non-alkaloid constituents of Uncaria rhynchophylla by column chromatography on silica gel, ODS, Sephadex LH-20, and preparative HPLC chromatography, and their structures were elucidated by analyses of the MS and NMR spectral data. All the compounds were isolated from the genus Uncaria for the first time, and 1 was a new compound. The ~1H-NMR and ~(13)C-NMR data of two compounds(12 and 13) in deuteron-chloroform were completely assigned. This study enriched the steroid constituents of U. rhynchophylla and provided scientific references for the elucidation of active constituents and further development and utilization of U. rhynchophylla.


Assuntos
Uncaria , Cromatografia Líquida de Alta Pressão , Esteroides , Uncaria/química
10.
Plant Cell ; 30(6): 1322-1336, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29764984

RESUMO

Flowering time is an adaptive life history trait. Capsella rubella, a close relative of Arabidopsis thaliana and a young species, displays extensive variation for flowering time but low standing genetic variation due to an extreme bottleneck event, providing an excellent opportunity to understand how phenotypic diversity can occur with a limited initial gene pool. Here, we demonstrate that common allelic variation and parallel evolution at the FLC locus confer variation in flowering time in C. rubella. We show that two overlapping deletions in the 5' untranslated region (UTR) of C. rubella FLC, which are associated with local changes in chromatin conformation and histone modifications, reduce its expression levels and promote flowering. We further show that these two pervasive variants originated independently in natural C. rubella populations after speciation and spread to an intermediate frequency, suggesting a role of this parallel cis-regulatory change in adaptive evolution. Our results provide an example of how parallel mutations in the same 5' UTR region can shape phenotypic evolution in plants.


Assuntos
Capsella/genética , Capsella/fisiologia , Flores/genética , Flores/fisiologia , Alelos , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia
11.
Zhonghua Nan Ke Xue ; 27(1): 3-10, 2021 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-34914274

RESUMO

OBJECTIVE: To establish a model of oxidative stress (OS) injury in mouse Leydig cells using α-α'-azodiisobutyramidine hydrochloride (AAPH) and evaluate the physiological function. METHODS: In Experiment 1, we treated mouse TM3 Leydig cells with AAPH at 0, 1, 5, 10, 50 and 100 mmol/L for 4, 8 and 24 h respectively and measured the activity of the cells using MTS, their aging by ß-galactoside staining, mitochondrial membrane potential by JC-1 fluorescence and mitochondrial DNA copy number by qPCR. In Experiment 2, we treated the TM3 cells selected in Experiment 1 according to the AAPH concentration range (≤10 mmol/L) with AAPH at 0, 0.1, 0.5, 1, 2, 4, 6, 8 and 10 mmol/L for 24, 48 and 72 h respectively, detected the activity and aging of the cells and the ROS positive rate, and determined the optimal concentration and time of AAPH in inducing OS injury in the TM3 cells. RESULTS: Experiment 1 showed that the survival rate of the TM3 cells was ≥50% in the 4-h 50 mmol/L, 8-h 10 mmol/L and 24-h 5 mmol/L AAPH groups, the initial concentration of AAPH was ≤10 mmol/L, with the action time of ≥24 h. Experiment 2 manifested that in the 24-h 6 mmol/L AAPH group, the survival rate of the TM3 cells was ≥70%, with an ROS positive rate of 56.88%, normal mitochondrial membrane potential, increased number of mtDNA copies, but no senescence. CONCLUSIONS: Treatment with AAPH at the concentration of 6 mmol/L for 24 hours is suitable for induction of OS injury in the TM3 cells.


Assuntos
Células Intersticiais do Testículo , Mitocôndrias , Animais , Masculino , Camundongos , Estresse Oxidativo
12.
Phys Rev Lett ; 124(10): 106403, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32216384

RESUMO

We report a detailed study of tunneling spectra measured on 2H-Ta_{x}Nb_{1-x}Se_{2} (x=0∼0.1) single crystals using a low-temperature scanning tunneling microscope. The prominent gaplike feature, which has not been understood for a long time, was found to be accompanied by some "in-gap" fine structures. By investigating the second-derivative spectra and their temperature and magnetic field dependencies, we were able to prove that inelastic electron tunneling is the origin of these features and obtain the Eliashberg function of 2H-Ta_{x}Nb_{1-x}Se_{2} at an atomic scale, providing a potential way to study the local Eliashberg function and the phonon spectra of the related transition-metal dichalcogenides.

13.
J Environ Manage ; 238: 442-450, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30870676

RESUMO

Continuous exposure to pharmaceuticals and personal care products (PPCPs) is a critical concern given potential toxicity impacts on aquatic environments and human health, although concentrations of PPCPs in the environment are low. While several studies have focused on the fate and toxicity of organic micropollutants in wastewater, the environmental impacts of life cycle assessment induced by these organic micropollutants in advanced wastewater treatment processes are still unknown. To address this need, an environmental evaluation of three representative advanced wastewater treatment processes (ozonation, granular activated carbon adsorption and reverse osmosis) involving PPCPs removal was conducted using life cycle assessment and USEtox model in this study. Although a large amount of PPCPs can be eliminated during conventional waste highest characterization factors for freshwater toxicity, while 17α-ethinylestradiol, sertraline, and 17ß-estradiol had the highest human toxicity characterization factors. From the perspective of LCA, reverse osmosis appeared to have the greatest environmental burden due to the high energy and material consumption during the treatment process. After involving 126 PPCPs in life cycle inventory, the ecotoxicity impact results were increased significantly in three advanced wastewater treatment processes. The contribution of effluent was improved in toxicity impact category, accounting more than 25% for the three processes. The effluent (including PPCPs) as the key factor was next only to electricity and chemicals in eutrophication, ecotoxicity and human toxicity impacts category particularly. Therefore, PPCPs should not be ignored in life cycle assessment of advanced wastewater treatment processes, although they are not typically monitored in wastewater. These results are valuable for conducting a comprehensive environmental evaluation of advanced wastewater treatment processes considering micro-pollutants removal. The identified PPCPs with high freshwater and human toxicity can be considered as the priority control index of organic micropollutants for wastewater treatment plants.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Filtração , Água Doce , Humanos , Eliminação de Resíduos Líquidos , Águas Residuárias
14.
Zhongguo Zhong Yao Za Zhi ; 39(16): 3180-3, 2014 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-25509311

RESUMO

To make a thorough investigation of the common She's nationality wild medicinal plants resources in our country, including the species, the distribution, the folk application and the endemic medicinal plant species, Field surveyed was conducted with 25 She people mainly lived area (county, district or city) throughout the country, the folk prescription and treatment cases provided by She's medical personnel, the drug usage and dosage, the commonly used traditional She's medicine and drug samples were collected. And the distribution, growing environment of these plants were investigated, their characteristics, photographs, GPS data and track were record , and the fresh wax leaf or plants specimens were collected. In total 1 600 varieties of folk medicine of She's nationality, 450 disease names and 1 016 prescriptions were collected. 520 kinds of these medicinal plants were commonly used, growing mainly distributed in the southeastern China, about 200 meters above sea level to 1 500 meters. There are 5 First-Grade State protection wild plants (medicinal), 15 second-Grade State protection wild plants (medicinal), and 11 She characteristic medicinal plants in our study, they belong to 144 families, 312 genera 494 species, 2 subspecies, 17 varieties, 3 forms and 1 cultivated varieties of She's nationality. Folk medicine usage is different from the traditional Chinese medicine and ethnic medicine. This survey finds out the common She's nationality wild medicinal plants resources in China, including the species, the distribution, the folk application and commonly used drugs, and found the rare and endangered medicinal plants and the She's nationality endemic medicinal plants, which provides a basis for further development and use the traditional She's medicine resources.


Assuntos
Medicamentos de Ervas Chinesas/análise , Medicina Tradicional Chinesa , Plantas Medicinais/crescimento & desenvolvimento , China/etnologia , Conservação dos Recursos Naturais , Etnicidade , Humanos , Plantas Medicinais/química , Plantas Medicinais/classificação
15.
Sci Total Environ ; 915: 170070, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38218484

RESUMO

The coupled N and S cycling in variable redox gradients in the hyporheic zone (HZ) of the rivers receiving effluents from wastewater treatment plants is unclear. Using two representative effluent-dominated rivers as model systems, a metagenome approach was employed to explore the spatiotemporal redox zonation of the HZ and the N/S cycling processes within the system. The results manifested that nitrate reduction represented the fundamental nitrogen pathway in the HZ. Interestingly, DNRA coupled with sulfur reduction, and denitrification coupled with sulfur oxidation were respectively abundant in the oxic and anoxic zone. Lower nitrate concentration (0-2.72 mg-N/L) and more abundant genes involved in denitrification (napB, NarGHI) and sulfur oxidation (sseA, glpE) were detected in the anoxic zone. Contrarily, the nitrate concentration (0.07-4.87 mg-N/L) and the abundance of genes involved in sulfur reduction (ttrB, sudA) and DNRA (nirBD) were observed more abundant in the oxic zone. Therefore, the results verified the oxygen-limited condition did not suppress but rather facilitated the denitrification process in the presence of active S cycling. The high relative abundances of nosZ gene encoding sequence (3-5 % relative to all nitrogen-cycling processes) in both the effluent-discharging area and downstream area highly confirmed that HZ was capable of alleviating the N2O emission in the region. The functional keystone taxa were revealed through co-occurrence network analysis. The structural equation model shows that the genes of N/S cycling were positively impacted by functional keystone taxa, especially the N cycling genes. Functional keystone taxa were proven driven by the redox gradient, demonstrating their positive roles in mediating N/S cycling processes. The promoting effect on nitrate reduction coupled with sulfur cycling was clarified when redox conditions oscillated, providing a new perspective on mitigating nitrogen pollution and greenhouse gas emissions in effluent-receiving rivers.


Assuntos
Desnitrificação , Nitratos , Nitratos/metabolismo , Nitrogênio/metabolismo , Compostos Orgânicos , Enxofre/metabolismo , Oxirredução
16.
Water Res ; 261: 122001, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38964215

RESUMO

Impounded lakes are often interconnected in large-scale water diversion projects to form a coordinated system for water allocation and regulation. The alternating runoff and transferred water can significantly impact local ecosystems, which are initially reflected in the sensitive phytoplankton. Nonetheless, limited information is available on the temporal dynamics and assembly patterns of phytoplankton community in impounded lakes responding to continuous and periodic water diversion. Herein, a long-term monitoring from 2013 to 2020 were conducted to systematically investigate the response of phytoplankton community, including its characteristics, stability, and the ecological processes governing community assembly, in representative impounded lakes to the South-to-North Water Diversion Project (SNWDP) in China. In the initial stage of the SNWDP, the phytoplankton diversity indices experienced a decrease during both non-water diversion periods (8.5 %∼21.2 %) and water diversion periods (5.6 %∼12.2 %), implying a disruption in the aquatic ecosystem. But the regular delivery of high-quality water from the Yangtze River gradually increased phytoplankton diversity and mediated ecological assembly processes shifting from stochastic to deterministic. Meanwhile, reduced nutrients restricted the growth of phytoplankton, pushing species to interact more closely to maintain the functionality and stability of the co-occurrence network. The partial least squares path model revealed that ecological process (path coefficient = 0.525, p < 0.01) and interspecies interactions in networks (path coefficient = -0.806, p < 0.01) jointly influenced the keystone and dominant species, ultimately resulting in an improvement in stability (path coefficient = 0.878, p < 0.01). Overall, the phytoplankton communities experienced an evolutionary process from short-term disruption to long-term adaptation, demonstrating resilience and adaptability in response to the challenges posed by the SNWDP. This study revealed the response and adaptation mechanism of phytoplankton communities in impounded lakes to water diversion projects, which is helpful for maintaining the lake ecological health and formulating rational water management strategies.

17.
Zhongguo Zhong Yao Za Zhi ; 38(16): 2661-4, 2013 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-24228583

RESUMO

To explore anti-tumor active components of Chimonanthus salicifolius, the phytochemistry of the chloroform fraction from leaves extract was investigated by repeated silica gel column chromatography. Twelve compounds were isolated and their structures were identified by physicochemical properties and spectroscopic data analysis as 9-epi-blumenol C(1), blumenol C(2), (+)-dehydrovomifoliol (3), (+)-vomifoliol (4), robinlin (5), (-)-loliolide (6), isofraxidin (7), scopoletin (8), 6,7-dimethoxycoumarin (9), 6, 7, 8-trimethoxycoumarin (10), beta-sitostenone (11), and beta-stigmasterol(12). Compounds 1-6 belonging to nor-sesquiterpenoids were isolated from the family Calycanthaceae for the first time. Compound 1 was a new natural product. Compounds 7, 11 and 12 were obtained from this plant for the first time.


Assuntos
Antineoplásicos/análise , Calycanthaceae/química , Clorofórmio/química , Medicamentos de Ervas Chinesas/análise , Folhas de Planta/química , Antineoplásicos/isolamento & purificação , Medicamentos de Ervas Chinesas/isolamento & purificação
18.
Exp Ther Med ; 25(4): 155, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36911381

RESUMO

Ischemic heart disease is a common cardiovascular disease. Scutellarin (SCU) exhibits protective effects in ischemic cardiomyocytes; however, to the best of our knowledge, the protective mechanism of SCU remains unclear. The present study was performed to investigate the protective effect of SCU on cardiomyocytes after ischemia/reperfusion (I/R) injury and the underlying mechanism. Mice were intraperitoneally injected with SCU (20 mg/kg) for 7 days before establishing the heart I/R injury model. Cardiac function was detected using small animal echocardiography, apoptotic cells were visualized using TUNEL staining, the myocardial infarct area was assessed by 2,3,5-triphenyltetrazolium chloride staining, and the protein levels of cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), Bcl-2, Bax and cleaved Caspase-3 were detected by western blotting. In in vitro experiments, H9c2 cells were pretreated with SCU, RU.521 (cGAS inhibitor) and H-151 (STING inhibitor), before cell hypoxia/reoxygenation (H/R) injury. The viability of H9c2 cells was detected using a Cell Counting Kit-8 assay, the rate of apoptosis was determined by flow cytometry, and the protein expression levels of cGAS, STING, Bcl-2, Bax and cleaved Caspase-3 were detected by western blotting. It was revealed that SCU ameliorated cardiac dysfunction and apoptosis, and inhibited the activation of the cGAS-STING and Bcl-2/Bax/Caspase-3 signaling pathways in I/R-injured mice. It was also observed that SCU significantly increased cell viability and decreased apoptosis in H/R-induced H9c2 cells. Furthermore, H/R increased the expression levels of cGAS, STING and cleaved Caspase-3, and decreased the ratio of Bcl-2/Bax, which could be reversed by treatment with SCU, RU.521 and H-151. The present study demonstrated that the cGAS-STING signaling pathway may be involved in the regulation of the activation of the Bcl-2/Bax/Caspase-3 signaling pathway to mediate I/R-induced cardiomyocyte apoptosis and cardiac dysfunction, which could be ameliorated by SCU treatment.

19.
Environ Pollut ; 336: 122478, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678739

RESUMO

The information on the collaborative removal of nitrate and trace organic contaminants in the thin-layer capping system covered with Fe-loaded biochar (FeBC) is limited. The community changes of bacteria, archaea and fungi, and their co-occurrence patterns during the remediation processes are also unknown. In this study, the optimized biochar (BC) and FeBC were selected as the capping materials in a batch experiment for the remediation of overlying water and sediment polluted with nitrate and bisphenol A (BPA). The community structure and metabolic activities of bacteria, archaea and fungi were investigated. During the incubation (28 d), the nitrate in overlying water decreased from 29.6 to 11.0 mg L-1 in the FeBC group, 2.9 and 1.8 times higher than the removal efficiencies in Control and BC group. The nitrate in the sediment declined from 5.03 to 0.75 mg kg-1 in the FeBC group, 1.3 and 1.1 times higher than those in Control and BC group. The BPA content in the overlying water in BC group and FeBC group maintained below 0.4 mg L-1 during incubation, signally lower than in the Control group. After capping with FeBC, a series of species in bacteria, archaea and fungi could collaboratively contribute to the removal of nitrate and BPA. In the FeBC group, more metabolism pathways related to nitrogen metabolism (KO00910) and Bisphenol degradation (KO00363) were generated. The co-occurrence network analysis manifested a more intense interaction within bacteria communities than archaea and fungi. Proteobacteria, Firmicutes, Actinobacteria in bacteria, and Crenarchaeota in archaea are verified keystone species in co-occurrence network construction. The information demonstrated the improved pollutant attenuation by optimizing biochar properties, improving microbial diversity and upgrading microbial metabolic activities. Our results are of significance in providing theoretical guidance on the remediation of sediments polluted with nitrate and trace organic contaminants.


Assuntos
Sedimentos Geológicos , Nitratos , Nitratos/química , Sedimentos Geológicos/química , Bactérias , Compostos Benzidrílicos , Archaea , Interações Microbianas , Água
20.
Materials (Basel) ; 16(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36903200

RESUMO

High-performance MgO-CaO-Fe2O3 clinker was prepared using magnesite from Xinjiang (with high calcium and low silica), calcium oxide, and ferric oxide as raw materials. Microstructural analysis and thermogravimetric analysis, combined with HSC chemistry 6 software simulations, were used to investigate the synthesis mechanism of MgO-CaO-Fe2O3 clinker and the effect of firing temperature on the properties of MgO-CaO-Fe2O3 clinker. The results show that MgO-CaO-Fe2O3 clinker with a bulk density of 3.42 g·cm-3, water absorption of 0.7%, and excellent physical properties can be formed by firing at 1600 °C for 3 h. In addition, the crushed and reformed specimens can be refired at temperatures of 1300 °C and 1600 °C to achieve compressive strengths of 17.9 MPa and 39.1 MPa, respectively. The main crystalline phase of the MgO-CaO-Fe2O3 clinker is the MgO phase; the 2CaO·Fe2O3 phase generated by the reaction is distributed between the MgO grains to form a cemented structure with a small quantity of 3CaO·SiO2 and 4CaO·Al2O3·Fe2O3 also distributed between the MgO grains. A series of decomposition and resynthesis chemical reactions occurred during the firing of the MgO-CaO-Fe2O3 clinker, and the liquid phase appeared in the system once the firing temperature exceeded 1250 °C. The presence of the liquid phase promoted intergranular mass transfer between the MgO grains, ensuring the continuous growth of the MgO grains and furthering the densification of the MgO-CaO-Fe2O3 clinker.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA