Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 492, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760719

RESUMO

Rapeseed (Brassica napus L.), accounts for nearly 16% of vegetable oil, is the world's second produced oilseed. However, pod shattering has caused significant yield loses in rapeseed production, particularly during mechanical harvesting. The GH28 genes can promote pod shattering by changing the structure of the pod cell wall in Arabidopsis. However, the role of the GH28 gene family in rapeseed was largely unknown. Therefore, a genome-wide comprehensive analysis was conducted to classify the role of GH28 gene family on rapeseed pod shattering. A total of 37 BnaGH28 genes in the rapeseed genome were identified. These BnaGH28s can be divided into five groups (Group A-E), based on phylogenetic and synteny analysis. Protein property, gene structure, conserved motif, cis-acting element, and gene expression profile of BnaGH28 genes in the same group were similar. Specially, the expression level of genes in group A-D was gradually decreased, but increased in group E with the development of silique. Among eleven higher expressed genes in group E, two BnaGH28 genes (BnaA07T0199500ZS and BnaC06T0206500ZS) were significantly regulated by IAA or GA treatment. And the significant effects of BnaA07T0199500ZS variation on pod shattering resistance were also demonstrated in present study. These results could open a new window for insight into the role of BnaGH28 genes on pod shattering resistance in rapeseed.


Assuntos
Brassica napus , Filogenia , Proteínas de Plantas , Brassica napus/genética , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Genoma de Planta , Sintenia , Perfilação da Expressão Gênica
2.
BMC Plant Biol ; 24(1): 21, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166550

RESUMO

Rapeseed (Brassica napus L.) with short or no dormancy period are easy to germinate before harvest (pre-harvest sprouting, PHS). PHS has seriously decreased seed weight and oil content in B. napus. Short-chain dehydrogenase/ reductase (SDR) genes have been found to related to seed dormancy by promoting ABA biosynthesis in rice and Arabidopsis. In order to clarify whether SDR genes are the key factor of seed dormancy in B. napus, homology sequence blast, protein physicochemical properties, conserved motif, gene structure, cis-acting element, gene expression and variation analysis were conducted in present study. Results shown that 142 BnaSDR genes, unevenly distributed on 19 chromosomes, have been identified in B. napus genome. Among them, four BnaSDR gene clusters present in chromosome A04、A05、C03、C04 were also identified. These 142 BnaSDR genes were divided into four subfamilies on phylogenetic tree. Members of the same subgroup have similar protein characters, conserved motifs, gene structure, cis-acting elements and tissue expression profiles. Specially, the expression levels of genes in subgroup A, B and C were gradually decreased, but increased in subgroup D with the development of seeds. Among seven higher expressed genes in group D, six BnaSDR genes were significantly higher expressed in weak dormancy line than that in nondormancy line. And the significant effects of BnaC01T0313900ZS and BnaC03T0300500ZS variation on seed dormancy were also demonstrated in present study. These findings provide a key information for investigating the function of BnaSDRs on seed dormancy in B. napus.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica napus/metabolismo , Dormência de Plantas/genética , Perfilação da Expressão Gênica , Filogenia , Brassica rapa/genética , Sementes/genética , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Plants (Basel) ; 12(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37447144

RESUMO

Dihydroflavonol 4-reductase (DFR) is a key enzyme in the flavonoid biosynthetic pathway and is essential for the formation of plants' color. In this study, 26 BnDFR genes were identified using 6 Arabidopsis DFR genes as reference. The physicochemical properties, subcellular localization, and conserved structure of BnDFR proteins were analyzed; the evolutionary relationship, collinearity analysis, and expression characteristics of BnDFR genes were studied; and the correlation between the expression level of BnDFR genes and anthocyanin content in rape petals were analyzed. The results showed that the 26 BnDFRs were located in chloroplasts, cytoplasm, nuclei, and mitochondria, distributed on 17 chromosomes, and divided into 4 groups; members of the same group have a similar function, which may be related to the environmental response elements and plant hormone response elements. Intraspecific collinearity analysis showed 51 pairs of collinear genes, and interspecific collinearity analysis showed 30 pairs of collinear genes. Analysis of the expression levels of BnDFRs and anthocyanin content in different color rape petals showed that BnDFR6 and BnDFR26 might play an important role in the synthesis of anthocyanins in rape petals. This provides theoretical guidance for further analysis of the anthocyanin anabolism mechanism involved in the DFR gene in Brassica napus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA