Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(35): 23467-23476, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37614218

RESUMO

Molecular dynamics (MD) is a widely-used tool for simulating molecular and materials properties. It is common wisdom that molecular dynamics simulations should obey physical laws and, hence, lots of effort is put into ensuring that molecular dynamics simulations are energy conserving. The emergence of machine learning (ML) potentials for MD leads to a growing realization that monitoring conservation of energy during simulations is of low utility because the dynamics is often unphysically dissociative. Other ML methods for MD are not based on a potential and provide only forces or trajectories which are reasonable but not necessarily energy-conserving. Here we propose to clearly distinguish between the simulation-energy and true-energy conservation and highlight that the simulations should focus on decreasing the degree of true-energy non-conservation. We introduce very simple, new criteria for evaluating the quality of molecular dynamics by estimating the degree of true-energy non-conservation and we demonstrate their practical utility on an example of infrared spectra simulations. These criteria are more important and intuitive than simply evaluating the quality of the ML potential energies and forces as is commonly done and can be applied universally, e.g., even for trajectories with unknown or discontinuous potential energy. Such an approach introduces new standards for evaluating MD by focusing on the true-energy conservation and can help in developing more accurate methods for simulating molecular and materials properties.

2.
J Chem Theory Comput ; 20(12): 5043-5057, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38836623

RESUMO

We present an open-source MLatom@XACS software ecosystem for on-the-fly surface hopping nonadiabatic dynamics based on the Landau-Zener-Belyaev-Lebedev algorithm. The dynamics can be performed via Python API with a wide range of quantum mechanical (QM) and machine learning (ML) methods, including ab initio QM (CASSCF and ADC(2)), semiempirical QM methods (e.g., AM1, PM3, OMx, and ODMx), and many types of ML potentials (e.g., KREG, ANI, and MACE). Combinations of QM and ML methods can also be used. While the user can build their own combinations, we provide AIQM1, which is based on Δ-learning and can be used out-of-the-box. We showcase how AIQM1 reproduces the isomerization quantum yield of trans-azobenzene at a low cost. We provide example scripts that, in dozens of lines, enable the user to obtain the final population plots by simply providing the initial geometry of a molecule. Thus, those scripts perform geometry optimization, normal mode calculations, initial condition sampling, parallel trajectories propagation, population analysis, and final result plotting. Given the capabilities of MLatom to be used for training different ML models, this ecosystem can be seamlessly integrated into the protocols building ML models for nonadiabatic dynamics. In the future, a deeper and more efficient integration of MLatom with Newton-X will enable a vast range of functionalities for surface hopping dynamics, such as fewest-switches surface hopping, to facilitate similar workflows via the Python API.

3.
J Chem Theory Comput ; 20(3): 1193-1213, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38270978

RESUMO

Machine learning (ML) is increasingly becoming a common tool in computational chemistry. At the same time, the rapid development of ML methods requires a flexible software framework for designing custom workflows. MLatom 3 is a program package designed to leverage the power of ML to enhance typical computational chemistry simulations and to create complex workflows. This open-source package provides plenty of choice to the users who can run simulations with the command-line options, input files, or with scripts using MLatom as a Python package, both on their computers and on the online XACS cloud computing service at XACScloud.com. Computational chemists can calculate energies and thermochemical properties, optimize geometries, run molecular and quantum dynamics, and simulate (ro)vibrational, one-photon UV/vis absorption, and two-photon absorption spectra with ML, quantum mechanical, and combined models. The users can choose from an extensive library of methods containing pretrained ML models and quantum mechanical approximations such as AIQM1 approaching coupled-cluster accuracy. The developers can build their own models using various ML algorithms. The great flexibility of MLatom is largely due to the extensive use of the interfaces to many state-of-the-art software packages and libraries.

4.
J Chem Theory Comput ; 19(8): 2369-2379, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37023063

RESUMO

The KREG and pKREG models were proven to enable accurate learning of multidimensional single-molecule surfaces of quantum chemical properties such as ground-state potential energies, excitation energies, and oscillator strengths. These models are based on kernel ridge regression (KRR) with the Gaussian kernel function and employ a relative-to-equilibrium (RE) global molecular descriptor, while pKREG is designed to enforce invariance under atom permutations with a permutationally invariant kernel. Here we extend these two models to also explicitly include the derivative information from the training data into the models, which greatly improves their accuracy. We demonstrate on the example of learning potential energies and energy gradients that KREG and pKREG models are better or on par with state-of-the-art machine learning models. We also found that in challenging cases both energy and energy gradient labels should be learned to properly model potential energy surfaces and learning only energies or gradients is insufficient. The models' open-source implementation is freely available in the MLatom package for general-purpose atomistic machine learning simulations, which can be also performed on the MLatom@XACS cloud computing service.

5.
J Phys Chem Lett ; 14(34): 7732-7743, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37606602

RESUMO

We demonstrate that AI can learn atomistic systems in the four-dimensional (4D) spacetime. For this, we introduce the 4D-spacetime GICnet model, which for the given initial conditions (nuclear positions and velocities at time zero) can predict nuclear positions and velocities as a continuous function of time up to the distant future. Such models of molecules can be unrolled in the time dimension to yield long-time high-resolution molecular dynamics trajectories with high efficiency and accuracy. 4D-spacetime models can make predictions for different times in any order and do not need a stepwise evaluation of forces and integration of the equations of motions at discretized time steps, which is a major advance over traditional, cost-inefficient molecular dynamics. These models can be used to speed up dynamics, simulate vibrational spectra, and obtain deeper insight into nuclear motions, as we demonstrate for a series of organic molecules.

6.
J Bioinform Comput Biol ; 20(1): 2150036, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34939905

RESUMO

The development of high-throughput technologies has produced increasing amounts of sequence data and an increasing need for efficient clustering algorithms that can process massive volumes of sequencing data for downstream analysis. Heuristic clustering methods are widely applied for sequence clustering because of their low computational complexity. Although numerous heuristic clustering methods have been developed, they suffer from two limitations: overestimation of inferred clusters and low clustering sensitivity. To address these issues, we present a new sequence clustering method (edClust) based on Edlib, a C/C[Formula: see text] library for fast, exact semi-global sequence alignment to group similar sequences. The new method edClust was tested on three large-scale sequence databases, and we compared edClust to several classic heuristic clustering methods, such as UCLUST, CD-HIT, and VSEARCH. Evaluations based on the metrics of cluster number and seed sensitivity (SS) demonstrate that edClust can produce fewer clusters than other methods and that its SS is higher than that of other methods. The source codes of edClust are available from https://github.com/zhang134/EdClust.git under the GNU GPL license.


Assuntos
Heurística , Software , Algoritmos , Análise por Conglomerados , Alinhamento de Sequência
7.
Top Curr Chem (Cham) ; 379(4): 27, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34101036

RESUMO

Atomistic machine learning (AML) simulations are used in chemistry at an ever-increasing pace. A large number of AML models has been developed, but their implementations are scattered among different packages, each with its own conventions for input and output. Thus, here we give an overview of our MLatom 2 software package, which provides an integrative platform for a wide variety of AML simulations by implementing from scratch and interfacing existing software for a range of state-of-the-art models. These include kernel method-based model types such as KREG (native implementation), sGDML, and GAP-SOAP as well as neural-network-based model types such as ANI, DeepPot-SE, and PhysNet. The theoretical foundations behind these methods are overviewed too. The modular structure of MLatom allows for easy extension to more AML model types. MLatom 2 also has many other capabilities useful for AML simulations, such as the support of custom descriptors, farthest-point and structure-based sampling, hyperparameter optimization, model evaluation, and automatic learning curve generation. It can also be used for such multi-step tasks as Δ-learning, self-correction approaches, and absorption spectrum simulation within the machine-learning nuclear-ensemble approach. Several of these MLatom 2 capabilities are showcased in application examples.


Assuntos
Simulação por Computador , Hidrocarbonetos Cíclicos/química , Aprendizado de Máquina , Software , Estrutura Molecular
8.
J Econ Entomol ; 114(4): 1789-1795, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34137856

RESUMO

Pyrethroid insecticides have been widely utilized for insect pest control. Target-site resistance is one of the major mechanisms explaining pest resistance to pyrethroids. This study quantified pyrethroid resistance and fitness cost conferred by the voltage-gated sodium channel (VGSC) M918L mutation in Rhopalosiphum padi. Six s-kdr-SS and six s-kdr-RS parthenogenetic lineages were established from the same field population and were reared in the laboratory without exposure to pesticides for more than one year. Enzyme activity analysis demonstrated that metabolic resistance had no impact on these lineages. Bioassays showed that the M918L mutation strongly affected pyrethroid efficiency, conferring moderate resistance to bifenthrin (type I) (39.0-fold) and high resistance to lambda-cyhalothrin (type II) (194.7-fold). Compared with the life table of s-kdr-SS lineages, s-kdr-RS lineages exhibited a relative fitness cost with significant decreases in longevity and fecundity. Meanwhile, competitive fitness was measured by blending various ratios of s-kdr-SS and s-kdr-SS aphids. The results indicated that M918L-mediated resistance showed a significant fitness cost in the presence of wild aphids without insecticide pressure. The fitness cost strongly correlated with the initial resistance allele frequency. This work characterized the novel s-kdr M918L mutation in R. padi, defined its function in resistance to different types of pyrethroids, and documented that the M918L-mediated resistance has a significant fitness cost.


Assuntos
Afídeos , Inseticidas , Piretrinas , Animais , Afídeos/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mutação
9.
J Mater Chem B ; 3(18): 3677-3680, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32262841

RESUMO

Poly(lactic-co-glycolic acid) (PLGA) nanoparticles with bicyclol (5%) and 3-n-butyl-6-bromophthalid (Br-NBP) (3%) were prepared by an emulsification-solvent evaporation technique. The PLGA nanoparticles were, for the first time, successfully characterized by a laser trapping/confocal Raman spectroscopic technique using only individual PLGA nanoparticles. This technique allowed us to selectively obtain Raman spectra of optically trapped PLGA nanoparticles (∼10 nanoparticles) in solution. The Raman spectra of the PLGA nanoparticles loaded with hydrophobic drugs showed that these drugs were incorporated in the nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA