Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 20(9): 3324-3332, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31268298

RESUMO

Water-soluble poly(3-hydroxyalkanoate) containing ionic groups were designed by two successive photoactivated thiol-ene reactions. Sodium-3-mercapto-1-ethanesulfonate (SO3-) and poly(ethylene glycol) (PEG) methyl ether thiol were grafted onto poly(3-hydroxyoctanoate-co-3-hydroxyundecenoate) PHO(67)U(33) to introduce both ionic groups and hydrophilic moieties. The grafted copolymers PHO(67)SO3-(20)PEG(13) were then used as biocompatible coatings of nano-metal organic frameworks (nanoMOFs) surfaces. Scanning electron microscopy and scanning transmission electron microscopy coupled with energy dispersive X-ray characterizations have clearly demonstrated the presence of the copolymer on the MOF surface. These coated nanoMOFs are stable in aqueous and physiological fluids. Cell proliferation and cytotoxicity tests performed on murine macrophages J774.A1 revealed no cytotoxic side effect. Thus, biocompatibility and stability of these novel hybrid porous MOF structures encourage their use in the development of effective therapeutic nanoparticles.


Assuntos
Materiais Biocompatíveis/síntese química , Estruturas Metalorgânicas/síntese química , Nanoestruturas/química , Poli-Hidroxialcanoatos/síntese química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Proliferação de Células/efeitos dos fármacos , Química Click , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Camundongos , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/farmacologia , Compostos de Sulfidrila/química , Água/química
2.
J Neurosci ; 32(37): 12885-95, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22973012

RESUMO

Live imaging studies of the processes of demyelination and remyelination have so far been technically limited in mammals. We have thus generated a Xenopus laevis transgenic line allowing live imaging and conditional ablation of myelinating oligodendrocytes throughout the CNS. In these transgenic pMBP-eGFP-NTR tadpoles the myelin basic protein (MBP) regulatory sequences, specific to mature oligodendrocytes, are used to drive expression of an eGFP (enhanced green fluorescent protein) reporter fused to the Escherichia coli nitroreductase (NTR) selection enzyme. This enzyme converts the innocuous prodrug metronidazole (MTZ) to a cytotoxin. Using two-photon imaging in vivo, we show that pMBP-eGFP-NTR tadpoles display a graded oligodendrocyte ablation in response to MTZ, which depends on the exposure time to MTZ. MTZ-induced cell death was restricted to oligodendrocytes, without detectable axonal damage. After cessation of MTZ treatment, remyelination proceeded spontaneously, but was strongly accelerated by retinoic acid. Altogether, these features establish the Xenopus pMBP-eGFP-NTR line as a novel in vivo model for the study of demyelination/remyelination processes and for large-scale screens of therapeutic agents promoting myelin repair.


Assuntos
Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/fisiopatologia , Modelos Animais de Doenças , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Regeneração Nervosa/fisiologia , Xenopus laevis/anatomia & histologia , Xenopus laevis/fisiologia , Animais , Humanos
3.
J Biomed Opt ; 28(8): 082808, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37441563

RESUMO

Significance: Forces inside cells play a fundamental role in tissue growth, affecting important processes such as cancer cell migration or tissue repair after injury. Förster resonance energy transfer (FRET)-based tension sensors are a remarkable tool for studying these forces and should be made easier to use. Aim: We prove that absolute FRET efficiency can be measured on a simple setup, an order of magnitude more cost-effective than a standard FRET microscopy setup, by applying it to vinculin tension sensors (VinTS) at the focal adhesions of live CHO-K1 cells. Approach: Our setup located at Université Paris-Saclay acquires donor and acceptor fluorescence in parallel on two low-cost CMOS cameras and uses two LEDs for rapid switching of the excitation wavelength at a reduced cost. The calibration required to extract FRET efficiency was achieved using a single construct (TSMod). FRET efficiencies were measured for VinTS and the tail-less control VinTL, lacking the actin-binding domain of vinculin. Measurements were confirmed on the same cell type using a more standard intensity-based setup located at Rutgers University. Results: The average FRET efficiency of VinTS (22.0%±4%) over more than 10,000 focal adhesions is significantly lower (p<10-6) than that of VinTL (30.4%±5%), our control that is insensitive to force, in agreement with the force exerted on vinculin at focal adhesions. Attachment of the CHO-K1 cells on fibronectin decreases FRET efficiency, thus increasing the force, compared with poly-lysine. FRET efficiency for the VinTL control is consistent with all measurements currently available in the literature, confirming the validity of our measurements and hence of our simpler setup. Conclusions: Force measurements, resolved spatially inside a cell, can be achieved using FRET-based tension sensors with a cost effective intensity-based setup. This will facilitate combining FRET with techniques for applying controlled forces such as optical tweezers.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Adesões Focais , Humanos , Transferência Ressonante de Energia de Fluorescência/métodos , Adesões Focais/metabolismo , Vinculina/química , Análise Custo-Benefício , Fenômenos Mecânicos
4.
Pharmaceutics ; 15(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37513974

RESUMO

Silver nanoparticles (AgNPs) with broad-spectrum antimicrobial properties are gaining increasing interest in fighting multidrug-resistant bacteria. Herein, we describe the synthesis of AgNPs, stabilized by polyvinyl alcohol (PVA), with high purity and homogeneous sizes, using radiolysis. Solvated electrons and reducing radicals are induced from solvent radiolysis and no other chemical reducing agents are needed to reduce the metal ions. Another advantage of this method is that it leads to sterile colloidal suspensions, which can be directly used for medical applications. We systematically investigated the effect of the silver salt precursor on the optical properties, particle size, and morphology of the resulting colloidal AgNPs. With Ag2SO4 precursor, the AgNPs displayed a narrow size distribution (20 ± 2 nm). In contrast, AgNO3 and AgClO4 precursors lead to inhomogeneous AgNPs of various shapes. Moreover, the optimized AgNPs synthesized from Ag2SO4 were stable upon storage in water and phosphate-buffered saline (PBS) and were very effective in inhibiting the growth of Staphylococcus aureus (S. aureus) at a concentration of 0.6 µg·mL-1 while completely eradicating it at a concentration of 5.6 µg·mL-1. When compared with other AgNPs prepared by other strategies, the remarkable bactericidal ability against S. aureus of the AgNPs produced here opens up new perspectives for further applications in medicine, cosmetics, the food industry, or in elaborating antibacterial surfaces and other devices.

5.
Int J Pharm ; 610: 121202, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34666144

RESUMO

Poly(lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) are among the most employed (co)polymers for the preparation of drug nanocarriers for the treatment of cancer and infectious diseases. Before considering any clinical use, it is necessary to understand the interactions between polymeric nanoparticles (NPs) and their physiological environment, especially immune cells. Here, we propose a simple, yet precise method to assess NPs internalization kinetics in macrophages, based on the direct analysis of the cell culture media after different incubation times. The proof of concept is given here by using fluorescent PLGA NPs. Nanoparticle tracking analysis (NTA) was a method of choice, enabling detecting each individual NP and analyzing its trajectory while in Brownian motion. As compared to dynamic light scattering (DLS), NTA enabled a more precise determination of NP size distribution. The uptake process was rapid: in one hour, around a third of the NPs were internalized. In addition, the internalized NPs were visualized by confocal microscopy. The fluorescent cellular stacks were analyzed using a freely available macro for ImageJ software, Particle_In_Cell-3D. The internalized objects were localized and counted. This methodology could serve for further studies while analyzing the effects of NPs size, shape and surface properties on their interaction with various cell lines.


Assuntos
Nanopartículas , Ácido Poliglicólico , Técnicas de Cultura de Células , Portadores de Fármacos , Ácido Láctico , Macrófagos , Tamanho da Partícula
6.
Am J Pathol ; 174(2): 423-35, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19147823

RESUMO

Normal cells reach senescence after a specific time and number of divisions, leading ultimately to cell death. Although escape from this fate may be a requisite step in neoplastic transformation, the mechanisms governing senescent cell death have not been well investigated. We show here, using normal human epidermal keratinocytes, that no apoptotic markers appear with senescence. In contrast, the expression of several proteins involved in the regulation of macroautophagy, notably Beclin-1 and Bcl-2, was found to change with senescence. The corpses occurring at the senescence growth plateau displayed a large central area delimited by the cytokeratin network that contained a huge quantity of autophagic vacuoles, the damaged nucleus, and most mitochondria. 3-methyladenine, an inhibitor of autophagosome formation, but not the caspase inhibitor zVAD, prevented senescent cell death. We conclude that senescent cells do not die by apoptosis, but as a result of high macroautophagic activity that targets the primary vital cell components.


Assuntos
Autofagia/fisiologia , Queratinócitos/patologia , Proteínas Reguladoras de Apoptose/biossíntese , Proteína Beclina-1 , Western Blotting , Senescência Celular/fisiologia , Feminino , Citometria de Fluxo , Imunofluorescência , Expressão Gênica , Humanos , Marcação In Situ das Extremidades Cortadas , Queratinócitos/fisiologia , Proteínas de Membrana/biossíntese , Microscopia Eletrônica de Transmissão , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese
7.
Autophagy ; 9(10): 1527-39, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23970301

RESUMO

A high MAPK1/3 (also known as ERK2/1, respectively) activity, preventing spontaneous activation, is essential to maintain cell cycle arrest of mature oocytes of mammals, frogs or invertebrates such as starfish. Mature oocytes would undergo a "suicide"-like cell death if not fertilized. We previously have reported that downregulation of MAPK1/3 in unfertilized sea urchin eggs induces a calcium-dependent entry into mitosis. We show here that this event is followed by a series of pseudo-mitotic cell cycles associated with transient Cai increases, preceding CASP3/caspase-3 activation and apoptosis. However, cell death was delayed after inhibition of the Cai transients or of cyclin-dependent kinases (CDK), with roscovitine. In these conditions, eggs enter an autophagy program as suggested by detection of processed LC3B by western blot, immunofluorescence and immunogold staining, visualization of autophagy vesicles by electron microscopy, and an increase in acidic vesicular organelles (AVOs). We found that bafilomycin A 1 or an association of leupeptin and pepstatin, which are widely used to study autophagy, may act upon calcium signaling or cell cycle events, respectively, and not only on autophagy events. Finally, inhibition of PtdIns 3-kinase with wortmannin or LY294002 powerfully stimulated cell death of unfertilized eggs, which suggests that this activity does not negatively regulate autophagy as is often reported, but rather stimulates survival in unfertilized eggs. We suggest that apoptosis of unfertilized eggs is the consequence of an aberrant short attempt of development that occurs if MAPK1/3 is inactivated, but these eggs can use autophagy as a survival program when the cell cycle is blocked.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Animais , Ciclo Celular/fisiologia , Quinases Ciclina-Dependentes/metabolismo , Ativação Enzimática , Fertilização/fisiologia , Mitose/fisiologia , Óvulo , Fosfatidilinositol 3-Quinases , Ouriços-do-Mar
8.
Environ Microbiol Rep ; 5(1): 109-16, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23757139

RESUMO

Thermococcales are hyperthermophilic archaea found in deep-sea hydrothermal vents. They have been recently reported to produce membrane vesicles (MVs) into their culture medium. Here, we have characterized the mode of production and determined the biochemical composition of MVs from two species of Thermococcales, Thermococcus gammatolerans and Thermococcus kodakaraensis. We observed that MVs are produced by a budding process from the cell membrane reminiscent of ectosome (microparticle) formation in eukaryotes. MVs and cell membranes from the same species have a similar protein and lipid composition, confirming that MVs are produced from cell membranes. The major protein present in cell membranes and MVs of both species is the oligopeptide binding protein OppA. This protein is also abundant in MVs from cells grown in minimal medium, suggesting that OppA could be involved in processes other than peptides scavenging. We have previously shown that MVs from Thermococcales harbour DNA and protect DNA against thermodegradation. Here, we show that T. kodakaraensis cells transformed with the shuttle plasmid pLC70 release MVs harbouring this plasmid. Notably, these MVs can be used to transfer pLC70 into plasmid-free cells, suggesting that MVs could be involved in DNA transfer between cells at high temperature.


Assuntos
Proteínas Arqueais/metabolismo , DNA Arqueal/química , Organelas/metabolismo , Thermococcus/isolamento & purificação , Membrana Celular/química , Fontes Hidrotermais/microbiologia , Oceanos e Mares , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA