Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sensors (Basel) ; 16(11)2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27869689

RESUMO

This paper presents a multi-axis force/torque sensor based on simply-supported beam and optoelectronic technology. The sensor's main advantages are: (1) Low power consumption; (2) low-level noise in comparison with conventional methods of force sensing (e.g., using strain gauges); (3) the ability to be embedded into different mechanical structures; (4) miniaturisation; (5) simple manufacture and customisation to fit a wide-range of robot systems; and (6) low-cost fabrication and assembly of sensor structure. For these reasons, the proposed multi-axis force/torque sensor can be used in a wide range of application areas including medical robotics, manufacturing, and areas involving human-robot interaction. This paper shows the application of our concept of a force/torque sensor to flexible continuum manipulators: A cylindrical MIS (Minimally Invasive Surgery) robot, and includes its design, fabrication, and evaluation tests.

2.
IEEE Robot Autom Lett ; 6(2): 1059-1065, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33912664

RESUMO

Standardized acquisitions and diagnoses using robots and AI would potentially increase the general usability and reliability of medical ultrasound. Working towards this prospect, this paper presents the recent developments of a standardized acquisition workflow using a novel dual-probe ultrasound robot, for a project known as intelligent Fetal Imaging and Diagnosis (iFIND). The workflow includes an abdominal surface mapping step to obtain a non-parametric spline surface, a rule-based end-point calculation method to position each individual joint, and a motor synchronization method to achieve a smooth motion towards a target point. The design and implementation of the robot are first presented in this paper and the proposed workflow is then explained in detail with simulation and volunteer experiments performed and analyzed. The closed-form analytical solution to the specific motion planning problem has demonstrated a reliable performance controlling the robot to move towards the expected scanning areas and the calculated proximity of the robot to the surface shows that the robot maintains a safe distance while moving around the abdomen. The volunteer study has successfully demonstrated the reliable working and controllability of the robot in terms of acquiring desired ultrasound views. Our future work will focus on improving the motion planning, and on integrating the proposed standardized acquisition workflow with newly- developed ultrasound image processing methods to obtain diagnostic results in an accurate and consistent way.

3.
IOP Conf Ser Mater Sci Eng ; 470: 012031, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-34108998

RESUMO

Trans-esophageal echocardiography (TEE) is a miniatured intra-operative ultrasound system, widely used in routine diagnosis and interventional procedure monitoring, to assess cardiac structures and functions. As a way to assist the operation of TEE remotely, we have developed an add-on robotic system to actuate a commercial TEE probe. For the proposed robot, understanding the inverse kinematics (IK) which relates the probe pose to the joint parameters is the fundamental step towards automatic control of the system. Rather than using conventional numerical-based techniques which may have problems with speed, convergence, and stability when applying to the TEE robot, this paper explores a soft computing approach by constructing an Adaptive Neuro-Fuzzy Inference System (ANFIS) to learn from training data generated by the forward kinematics (FK) and then computing the inverse kinematics in order to control the orientation of the TEE probe. With 1900 training data over 40 epochs, the minimum training error for each joint parameter was found to be less than 0.1 degree. Validation using a separate data set has indicated that the maximum error was less than 0.3 degree for each joint parameter. It is therefore concluded that the ANFIS-based approach is an effective way, with acceptable accuracy, to compute the inverse kinematics of the TEE robot.

4.
IEEE Trans Med Imaging ; 38(12): 2755-2767, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31021795

RESUMO

Detecting acoustic shadows in ultrasound images is important in many clinical and engineering applications. Real-time feedback of acoustic shadows can guide sonographers to a standardized diagnostic viewing plane with minimal artifacts and can provide additional information for other automatic image analysis algorithms. However, automatically detecting shadow regions using learning-based algorithms is challenging because pixel-wise ground truth annotation of acoustic shadows is subjective and time consuming. In this paper, we propose a weakly supervised method for automatic confidence estimation of acoustic shadow regions. Our method is able to generate a dense shadow-focused confidence map. In our method, a shadow-seg module is built to learn general shadow features for shadow segmentation, based on global image-level annotations as well as a small number of coarse pixel-wise shadow annotations. A transfer function is introduced to extend the obtained binary shadow segmentation to a reference confidence map. In addition, a confidence estimation network is proposed to learn the mapping between input images and the reference confidence maps. This network is able to predict shadow confidence maps directly from input images during inference. We use evaluation metrics such as DICE, inter-class correlation, and so on, to verify the effectiveness of our method. Our method is more consistent than human annotation and outperforms the state-of-the-art quantitatively in shadow segmentation and qualitatively in confidence estimation of shadow regions. Furthermore, we demonstrate the applicability of our method by integrating shadow confidence maps into tasks such as ultrasound image classification, multi-view image fusion, and automated biometric measurements.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina Supervisionado , Ultrassonografia Pré-Natal/métodos , Algoritmos , Aprendizado Profundo , Feminino , Feto/diagnóstico por imagem , Humanos , Gravidez
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 2723-2726, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946457

RESUMO

Motion imaging phantoms are expensive, bulky and difficult to transport and set-up. The purpose of this paper is to demonstrate a simple approach to the design of multi-modality motion imaging phantoms that use mechanically stored energy to produce motion.We propose two phantom designs that use mainsprings and elastic bands to store energy. A rectangular piece was attached to an axle at the end of the transmission chain of each phantom, and underwent a rotary motion upon release of the mechanical motor. The phantoms were imaged with MRI and US, and the image sequences were embedded in a 1D non linear manifold (Laplacian Eigenmap) and the spectrogram of the embedding was used to derive the angular velocity over time. The derived velocities were consistent and reproducible within a small error. The proposed motion phantom concept showed great potential for the construction of simple and affordable motion phantoms.


Assuntos
Movimento (Física) , Imageamento por Ressonância Magnética , Imagens de Fantasmas
6.
J Vis Exp ; (143)2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30663700

RESUMO

With the potential for high precision, dexterity, and repeatability, a self-tracked robotic system can be employed to assist the acquisition of real-time ultrasound. However, limited numbers of robots designed for extra-corporeal ultrasound have been successfully translated into clinical use. In this study, we aim to build a bespoke robotic manipulator for extra-corporeal ultrasound examination, which is lightweight and has a small footprint. The robot is formed by five specially shaped links and custom-made joint mechanisms for probe manipulation, to cover the necessary range of motion with redundant degrees of freedom to ensure the patient's safety. The mechanical safety is emphasized with a clutch mechanism, to limit the force applied to patients. As a result of the design, the total weight of the manipulator is less than 2 kg and the length of the manipulator is about 25 cm. The design has been implemented, and simulation, phantom, and volunteer studies have been performed, to validate the range of motion, the ability to make fine adjustments, mechanical reliability, and the safe operation of the clutch. This paper details the design and implementation of the bespoke robotic ultrasound manipulator, with the design and assembly methods illustrated. Testing results to demonstrate the design features and clinical experience of using the system are presented. It is concluded that the current proposed robotic manipulator meets the requirements as a bespoke system for extra-corporeal ultrasound examination and has great potential to be translated into clinical use.


Assuntos
Robótica/instrumentação , Ultrassonografia , Fenômenos Biomecânicos , Desenho Assistido por Computador , Desenho de Equipamento , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes
7.
Micromachines (Basel) ; 9(2)2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-30393341

RESUMO

In recent years, 3D trans-oesophageal echocardiography (TOE) has become widely used for monitoring cardiac interventions. The control of the TOE probe during the procedure is a manual task which is tedious and harmful for the operator when exposed to radiation. To improve this technique, an add-on robotic system has been developed for holding and manipulating a commercial TOE probe. This paper focuses on the probe adjustment strategy in order to accurately monitor the moving intra-operative catheters. The positioning strategy is divided into an initialization step based on a pre-planning method, and a localized adjustment step based on the robotic differential kinematics. A series of experiments was performed to evaluate the initialization and the localized adjustment steps. The results indicate a mean error less than 10 mm from the phantom experiments for the initialization step, and a median error less than 1.5 mm from the computer-based simulation experiments for the localized adjustment step. Compared to the much bigger image volume, it is concluded that the proposed methods are feasible for this application. Future work will focus on evaluating the method in a more realistic TOE scanning scenario.

8.
Int J Med Robot ; 12(3): 342-54, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26230073

RESUMO

BACKGROUND: Trans-oesophageal echocardiography (TOE) has been widely utilized for cardiac disease diagnosis and interventional procedure guidance. However, the TOE operator is required to manually manipulate the probe, often for long periods of time and sometimes in an X-ray environment where there is exposure to ionizing radiation. METHODS: A novel robotic manipulation system for remote control of commercial TOE probes has been developed and tested. The system has four degrees of freedom (DOFs) and is characterized by a kinematic model. The accuracy of the model and the error propagation were analysed. RESULTS: The prototype system was shown to exhibit the required function in terms of the mechanical reliability and range of motion. The forward kinematic model can accurately predict the trajectory of the probe tip movement. The average point-to-point errors were 2.60 mm and 3.55°. CONCLUSIONS: Robotic assistance provided by the proposed system may improve the TOE operating environment. The proposed forward kinematic model can be further employed for automatic control. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Ecocardiografia Transesofagiana/instrumentação , Robótica/instrumentação , Fenômenos Biomecânicos , Desenho de Equipamento , Humanos , Reprodutibilidade dos Testes
9.
IEEE Trans Med Imaging ; 34(4): 861-76, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25291790

RESUMO

Echocardiography is a potential alternative to X-ray fluoroscopy in cardiac catheterization given its richness in soft tissue information and its lack of ionizing radiation. However, its small field of view and acoustic artifacts make direct automatic segmentation of the catheters very challenging. In this study, a fast catheter segmentation framework for echocardiographic imaging guided by the segmentation of corresponding X-ray fluoroscopic imaging is proposed. The complete framework consists of: 1) catheter initialization in the first X-ray frame; 2) catheter tracking in the rest of the X-ray sequence; 3) fast registration of corresponding X-ray and ultrasound frames; and 4) catheter segmentation in ultrasound images guided by the results of both X-ray tracking and fast registration. The main contributions include: 1) a Kalman filter-based growing strategy with more clinical data evalution; 2) a SURF detector applied in a constrained search space for catheter segmentation in ultrasound images; 3) a two layer hierarchical graph model to integrate and smooth catheter fragments into a complete catheter; and 4) the integration of these components into a system for clinical applications. This framework is evaluated on five sequences of porcine data and four sequences of patient data comprising more than 3000 X-ray frames and more than 1000 ultrasound frames. The results show that our algorithm is able to track the catheter in ultrasound images at 1.3 s per frame, with an error of less than 2 mm. However, although this may satisfy the accuracy for visualization purposes and is also fast, the algorithm still needs to be further accelerated for real-time clinical applications.


Assuntos
Cateterismo Cardíaco/métodos , Ecocardiografia/métodos , Fluoroscopia/métodos , Processamento de Imagem Assistida por Computador/métodos , Terapia Assistida por Computador/métodos , Algoritmos , Humanos
10.
Inf Process Med Imaging ; 24: 363-74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26221687

RESUMO

Manifold alignment can be used to reduce the dimensionality of multiple medical image datasets into a single globally consistent low-dimensional space. This may be desirable in a wide variety of problems, from fusion of different imaging modalities for Alzheimer's disease classification to 4DMR reconstruction from 2D MR slices. Unfortunately, most existing manifold alignment techniques require either a set of prior correspondences or comparability between the datasets in high-dimensional space, which is often not possible. We propose a novel technique for the 'self-alignment' of manifolds (SAM) from multiple dissimilar imaging datasets without prior correspondences or inter-dataset image comparisons. We quantitatively evaluate the method on 4DMR reconstruction from realistic, synthetic sagittal 2D MR slices from 6 volunteers and real data from 4 volunteers. Additionally, we demonstrate the technique for the compounding of two free breathing 3D ultrasound views from one volunteer. The proposed method performs significantly better for 4DMR reconstruction than state-of-the-art image-based techniques.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética , Reconhecimento Automatizado de Padrão/métodos , Técnica de Subtração , Ultrassonografia/métodos , Humanos , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Artigo em Inglês | MEDLINE | ID: mdl-22828833

RESUMO

The availability of programmable and reconfigurable ultrasound (US) research platforms may have a considerable impact on the advancement of ultrasound systems technology; indeed, they allow novel transmission strategies or challenging processing methods to be tested and experimentally refined. In this paper, the ULtrasound Advanced Open Platform (ULA-OP), recently developed in our University laboratory, is shown to be a flexible tool that can be easily adapted to a wide range of applications. Five nonstandard working modalities are illustrated. Vector Doppler and quasi-static elastography applications emphasize the real-time potential and versatility of the system. Flow-mediated dilation, pulse compression, and high-frame-rate imaging highlight the flexibility of data access at different points in the reception chain. For each modality, the role played by the onboard programmable devices is discussed. Experimental results are reported, indicating the relative performance of the system for each application.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação/métodos , Processamento de Sinais Assistido por Computador/instrumentação , Ultrassonografia/instrumentação , Interface Usuário-Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Interface Focus ; 1(4): 540-52, 2011 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22866230

RESUMO

Ultrasound elastography is a technique used for clinical imaging of tissue stiffness with a conventional ultrasound machine. It was first proposed two decades ago, but active research continues in this area to the present day. Numerous clinical applications have been investigated, mostly related to cancer imaging, and though these have yet to prove conclusive, the technique has seen increasing commercial and clinical interest. This paper presents a review of the most widely adopted, non-quantitative, techniques focusing on technical innovations rather than clinical applications. The review is not intended to be exhaustive, concentrating instead on placing the various techniques in context according to the authors' perspective of the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA