Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958936

RESUMO

The current tools for validating dose delivery and optimizing new radiotherapy technologies in radiation therapy do not account for important dose modifying factors (DMFs), such as variations in cellular repair capability, tumor oxygenation, ultra-high dose rates and the type of ionizing radiation used. These factors play a crucial role in tumor control and normal tissue complications. To address this need, we explored the feasibility of developing a transportable cell culture platform (TCCP) to assess the relative biological effectiveness (RBE) of ionizing radiation. We measured cell recovery, clonogenic viability and metabolic viability of MDA-MB-231 cells over several days at room temperature in a range of concentrations of fetal bovine serum (FBS) in medium-supplemented gelatin, under both normoxic and hypoxic oxygen environments. Additionally, we measured the clonogenic viability of the cells to characterize how the duration of the TCCP at room temperature affected their radiosensitivity at doses up to 16 Gy. We found that (78±2)% of MDA-MB-231 cells were successfully recovered after being kept at room temperature for three days in 50% FBS in medium-supplemented gelatin at hypoxia (0.4±0.1)% pO2, while metabolic and clonogenic viabilities as measured by ATP luminescence and colony formation were found to be (58±5)% and (57±4)%, respectively. Additionally, irradiating a TCCP under normoxic and hypoxic conditions yielded a clonogenic oxygen enhancement ratio (OER) of 1.4±0.6 and a metabolic OER of 1.9±0.4. Our results demonstrate that the TCCP can be used to assess the RBE of a DMF and provides a feasible platform for assessing DMFs in radiation therapy applications.


Assuntos
Gelatina , Neoplasias , Humanos , Relação Dose-Resposta à Radiação , Hipóxia , Oxigênio/metabolismo , Técnicas de Cultura de Células , Sobrevivência Celular
2.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175530

RESUMO

Epithelial ovarian cancer (EOC) remains the fifth leading cause of cancer-related death in women worldwide, partly due to the survival of chemoresistant, stem-like tumor-initiating cells (TICs) that promote disease relapse. We previously described a role for the NF-κB pathway in promoting TIC chemoresistance and survival through NF-κB transcription factors (TFs) RelA and RelB, which regulate genes important for the inflammatory response and those associated with cancer, including microRNAs (miRNAs). We hypothesized that NF-κB signaling differentially regulates miRNA expression through RelA and RelB to support TIC persistence. Inducible shRNA was stably expressed in OV90 cells to knockdown RELA or RELB; miR-seq analyses identified differentially expressed miRNAs hsa-miR-452-5p and hsa-miR-335-5p in cells grown in TIC versus adherent conditions. We validated the miR-seq findings via qPCR in TIC or adherent conditions with RELA or RELB knocked-down. We confirmed decreased expression of hsa-miR-452-5p when either RELA or RELB were depleted and increased expression of hsa-miR-335-5p when RELA was depleted. Either inhibiting miR-452-5p or mimicking miR-335-5p functionally decreased the stem-like potential of the TICs. These results highlight a novel role of NF-κB TFs in modulating miRNA expression in EOC cells, thus opening a better understanding toward preventing recurrence of EOC.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Feminino , Humanos , Carcinoma Epitelial do Ovário/genética , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Recidiva Local de Neoplasia , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias Ovarianas/genética
3.
BMC Cancer ; 18(1): 595, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29801480

RESUMO

BACKGROUND: Metastatic breast cancer carries a poor prognosis despite the success of newly targeted therapies. Treatment options remain especially limited for the subtype of triple negative breast cancer (TNBC). Several signaling pathways, including NF-κB, are altered in TNBC, and the complexity of this disease implies multi-faceted pathway interactions. Given that IKKε behaves as an oncogene in breast cancer, we hypothesized that IKKε regulates NF-κB signaling to control diverse oncogenic functions in TNBC. METHODS: Vector expression and RNA interference were used to investigate the functional role of IKKε in triple-negative breast cancer cells. Viability, protein expression, NF-κB binding activity, invasion, anoikis, and spheroid formation were examined in cells expressing high or low levels of IKKε, in conjunction with p52 RNA interference or MEK inhibition. RESULTS: This study found that non-canonical NF-κB p52 levels are inversely proportional to ΙΚΚε, and growth of TNBC cells in anchorage supportive, high-attachment conditions requires IKKε and activated MEK. Growth of these cells in anchorage resistant conditions requires IKKε and activated MEK or p52. In this model, IKKε and MEK cooperate to support overall viability whereas the p52 transcription factor is only required for viability in low attachment conditions, underscoring the contrasting roles of these proteins. CONCLUSIONS: This study illustrates the diverse functions of IKKε in TNBC and highlights the adaptability of NF-κB signaling in maintaining cancer cell survival under different growth conditions. A better understanding of the diversity of NF-κB signaling may ultimately improve the development of novel therapeutic regimens for TNBC.


Assuntos
Regulação Neoplásica da Expressão Gênica , Quinase I-kappa B/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Subunidade p52 de NF-kappa B/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Feminino , Humanos , Quinase I-kappa B/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Subunidade p52 de NF-kappa B/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/genética , Neoplasias de Mama Triplo Negativas/patologia
4.
BMC Cancer ; 16: 678, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27558154

RESUMO

BACKGROUND: shRNA-mediated lethality screening is a useful tool to identify essential targets in cancer biology. Ovarian cancer (OC) is extremely heterogeneous and most cases are advanced stages at diagnosis. OC has a high response rate initially, but becomes resistant to standard chemotherapy. We previously employed high throughput global shRNA sensitization screens to identify NF-kB related pathways. Here, we re-analyzed our previous shRNA screens in an unbiased manner to identify clinically applicable molecular targets. METHODS: We proceeded with siRNA lethality screening using the top 55 genes in an expanded set of 6 OC cell lines. We investigated clinical relevance of candidate targets in The Cancer Genome Atlas OC dataset. To move these findings towards the clinic, we chose four pharmacological inhibitors to recapitulate the top siRNA effects: Oxozeaenol (for MAP3K7/TAK1), BI6727 (PLK1), MK1775 (WEE1), and Lapatinib (ERBB2). Cytotoxic effects were measured by cellular viability assay, as single agents and in 2-way combinations. Co-treatments were evaluated in either sequential or simultaneous exposure to drug for short term and extended periods to simulate different treatment strategies. RESULTS: Loss-of-function shRNA screens followed by short-term siRNA validation screens identified therapeutic targets in OC cells. Candidate genes were dysregulated in a subset of TCGA OCs although the alterations of these genes showed no statistical significance to overall survival. Pharmacological inhibitors such as Oxozeaenol, BI6727, and MK1775 showed cytotoxic effects in OC cells regardless of cisplatin responsiveness, while all OC cells tested were cytostatic to Lapatinib. Co-treatment with BI6727 and MK1775 at sub-lethal concentrations was equally potent to BI6727 alone at lethal concentrations without cellular re-growth after the drugs were washed off, suggesting the co-inhibition at reduced dosages may be more efficacious than maximal single-agent cytotoxic concentrations. CONCLUSIONS: Loss-of-function screen followed by in vitro target validation using chemical inhibitors identified clinically relevant targets. This approach has the potential to systematically refine therapeutic strategies in OC. These molecular target-driven strategies may provide additional therapeutic options for women whose tumors have become refractory to standard chemotherapy.


Assuntos
Neoplasias Ovarianas/genética , Transcriptoma , Western Blotting , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , NF-kappa B/metabolismo , Neoplasias Ovarianas/metabolismo , RNA Interferente Pequeno/genética
5.
Gynecol Oncol ; 142(2): 332-40, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27235858

RESUMO

OBJECTIVE: The value of cell lines for pre-clinical work lies in choosing those with similar characteristics. Selection of cell lines is typically based on patient history, histological subtype at diagnosis, mutation patterns, or signaling pathways. Although recent studies established consensus regarding molecular characteristics of ovarian cancer cell lines, data on in vivo tumorigenicity remains only sporadically available, impeding translation of in vitro work to xenograft models. METHODS: We introduced 18 ovarian cancer cell lines into athymic nude mice through subcutaneous, intraperitoneal, and ovary intrabursal routes, and observed tumor development over 6weeks. We also profiled cell line gene expression and identified differentially expressed gene sets based on their ability to form tumors in the subcutaneous or intraperitoneal locations. Representative cell lines were further subjected to proteomic analyses. RESULTS: Ovarian cancer cell lines showed variable ability to grow in mice when implanted subcutaneous, intraperitoneal, or intrabursal. While some cell lines grew well in both SC and IP locations, others showed a strong propensity to grow in one location only. Gene expression profiles suggested that cell lines showing preference for IP growth had gene expression patterns more similar to primary tumors. CONCLUSIONS: We report the tumorigenicity of 17 human ovarian cancer cell lines and one mouse cell line in three distinct anatomical locations, and associated gene networks. Growth patterns and histopathology, linked to molecular characteristics, provide a valuable resource to the research community, and better guide the choice of cell lines for in vitro studies to translate efficiently into xenograft testing.


Assuntos
Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Neoplasias Ovarianas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Feminino , Xenoenxertos , Humanos , Camundongos , Transplante de Neoplasias , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo
6.
J Lesbian Stud ; 20(3-4): 324-41, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27254759

RESUMO

Men-women and women-men have a long tradition in Diné (Navajo) culture where they were, and sometimes still are, held in high esteem. Their supernatural prototypes figure prominently in parts of the Diné Origin Story. It is in this cosmological worldview and tradition of acceptance that Carrie, a multi-dualistic spirit, grew up to be a female-bodied man supported and respected by his/her family and community. He/she has worked in various professions defined as "masculine" in Diné and Western contexts, such as fire fighter, heavy equipment operator, truck driver, and building contractor. In addition, Carrie is a keeper of Diné traditions, and has also been active educating Native and Non-Native audiences on 2SpiritLesbianGayBiTransIntersexQueer issues.


Assuntos
Homossexualidade Feminina , Indígenas Norte-Americanos , Espiritualidade , Cultura , Feminino , Identidade de Gênero , Humanos , Masculino
7.
Cancer Res ; 84(13): 2073-2089, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38635891

RESUMO

Ovarian cancer can metastasize to the omentum, which is associated with a complex tumor microenvironment. Omental stromal cells facilitate ovarian cancer colonization by secreting cytokines and growth factors. An improved understanding of the tumor-supportive functions of specific cell populations in the omentum could identify strategies to prevent and treat ovarian cancer metastasis. Here, we showed that omental preadipocytes enhance the tumor initiation capacity of ovarian cancer cells. Secreted factors from preadipocytes supported cancer cell viability during nutrient and isolation stress and enabled prolonged proliferation. Coculturing with preadipocytes led to the upregulation of genes involved in extracellular matrix (ECM) organization, cellular response to stress, and regulation of insulin-like growth factor (IGF) signaling in ovarian cancer cells. IGF1 induced ECM genes and increased alternative NF-κB signaling by activating RelB. Inhibiting the IGF1 receptor initially increased tumor omental adhesion but decreased the growth of established preadipocyte-induced subcutaneous tumors as well as established intraperitoneal tumors. Together, this study shows that omental preadipocytes support ovarian cancer progression, which has implications for targeting metastasis. Significance: Omental preadipocyte-mediated IGF1 signaling promotes ovarian cancer tumorigenesis and metastasis via extracellular matrix remodeling, revealing a role for preadipocytes in regulating ovarian cancer progression and highlighting potential therapeutic targets for metastatic disease.


Assuntos
Matriz Extracelular , Fator de Crescimento Insulin-Like I , Omento , Neoplasias Ovarianas , Transdução de Sinais , Microambiente Tumoral , Feminino , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/genética , Omento/patologia , Omento/metabolismo , Humanos , Animais , Camundongos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fator de Crescimento Insulin-Like I/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Linhagem Celular Tumoral , Proliferação de Células , Receptor IGF Tipo 1/metabolismo , Metástase Neoplásica , Camundongos Nus
8.
Cancer Res Commun ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287565

RESUMO

High-grade serous ovarian cancer (HGSOC) remains a poorly understood disease with a high mortality rate. While most patients respond to cytotoxic therapies, a majority will experience recurrence. This may be due to a minority of drug resistant cancer stem-like cells (CSCs) that survive chemotherapy and are capable of repopulating heterogenous tumors. It remains unclear how CSCs are supported in the tumor microenvironment (TME) particularly during chemotherapy exposure. Tumor associated macrophages (TAMs) make up half of the immune population of the ovarian TME and are known to support CSCs and contribute to cancer progression. TAMs are plastic cells that alter their phenotype in response to environmental stimuli and thus may influence CSC maintenance during chemotherapy. Given the plasticity of TAMs we studied the effects of carboplatin on macrophage phenotypes using both THP-1- and peripheral blood mononuclear cell (PBMC)- derived macrophages and whether this supports CSCs and ovarian cancer progression following treatment. We found that carboplatin exposure induces an M1-like pro-inflammatory phenotype that promotes SOX2 expression, spheroid formation, and CD117+ ovarian CSCs, and that macrophage-secreted CCL2/MCP-1 is at least partially responsible for this effect. Depletion of TAMs during carboplatin exposure results in fewer CSCs and prolonged survival in a xenograft model of ovarian cancer. This study supports a role for platinum-based chemotherapies in promoting a transient pro-inflammatory M1-like TAM that enriches for CSCs during treatment. Improving our understanding of TME responses to cytotoxic drugs and identifying novel mechanisms of CSC maintenance will enable the development of better therapeutic strategies for HGSOC.

9.
Biotechniques ; 76(7): 299-309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39185782

RESUMO

Epitope tagging represents a powerful strategy for expedited identification, isolation, and characterization of proteins in molecular biological studies, including protein-protein interactions. We aimed to improve the reproducibility of epitope-tagged protein expression and detection by developing a range of plasmids as positive controls. The pJoseph2 family of expression plasmids functions in diverse cellular environments and cell types to enable the evaluation of transfection efficiency and antibody staining for epitope detection. The expressed green fluorescent proteins harbor five unique epitope tags, and their efficient expression in Escherichia coli, Drosophila Schneider's line 2 cells, and human SKOV3 and HEK293T cells was demonstrated by fluorescence microscopy and western blotting. The pJoseph2 plasmids provide versatile and valuable positive controls for numerous experimental applications.


Epitope tagging, a fundamental technique in molecular biology, involves attaching short amino acid sequences (epitope tags) to target proteins for their efficient identification and study. This technique has evolved since its inception, enabling diverse applications in protein research. Notably, CRISPR/Cas9 gene editing has enhanced epitope tagging by enabling the tagging of endogenous genes, expanding its versatility. However, reproducibility challenges exist, demanding positive controls for troubleshooting. The pJoseph2 family of plasmids was developed to address this need, providing robust positive controls for various epitope-based experiments, from bacterial expression to Drosophila and mammalian cell studies. This resource enhances the reliability and accuracy of epitope tagging, benefiting researchers across disciplines.


Assuntos
Western Blotting , Escherichia coli , Proteínas de Fluorescência Verde , Plasmídeos , Transfecção , Humanos , Plasmídeos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Animais , Células HEK293 , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Epitopos/genética , Linhagem Celular
10.
bioRxiv ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38712107

RESUMO

Mutations in isocitrate dehydrogenase 1 (IDH1) impart a neomorphic reaction that produces the oncometabolite D-2-hydroxyglutarate (D2HG), which can inhibit DNA and histone demethylases to drive tumorigenesis via epigenetic changes. Though heterozygous point mutations in patients primarily affect residue R132, there are myriad D2HG-producing mutants that display unique catalytic efficiency of D2HG production. Here, we show that catalytic efficiency of D2HG production is greater in IDH1 R132Q than R132H mutants, and expression of IDH1 R132Q in cellular and mouse xenograft models leads to higher D2HG concentrations in cells, tumors, and sera compared to R132H-expressing models. Reduced representation bisulfite sequencing (RRBS) analysis of xenograft tumors shows expression of IDH1 R132Q relative to R132H leads to hypermethylation patterns in pathways associated with DNA damage. Transcriptome analysis indicates that the IDH1 R132Q mutation has a more aggressive pro-tumor phenotype, with members of EGFR, Wnt, and PI3K signaling pathways differentially expressed, perhaps through non-epigenetic routes. Together, these data suggest that the catalytic efficiency of IDH1 mutants modulate D2HG levels in cellular and in vivo models, resulting in unique epigenetic and transcriptomic consequences where higher D2HG levels appear to be associated with more aggressive tumors.

11.
Mol Cancer Res ; 21(2): 170-186, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36214671

RESUMO

Disease recurrence in high-grade serous ovarian cancer may be due to cancer stem-like cells (CSC) that are resistant to chemotherapy and capable of reestablishing heterogeneous tumors. The alternative NF-κB signaling pathway is implicated in this process; however, the mechanism is unknown. Here we show that TNF-like weak inducer of apoptosis (TWEAK) and its receptor, Fn14, are strong inducers of alternative NF-κB signaling and are enriched in ovarian tumors following chemotherapy treatment. We further show that TWEAK enhances spheroid formation ability, asymmetric division capacity, and expression of SOX2 and epithelial-to-mesenchymal transition genes VIM and ZEB1 in ovarian cancer cells, phenotypes that are enhanced when TWEAK is combined with carboplatin. Moreover, TWEAK in combination with chemotherapy induces expression of the CSC marker CD117 in CD117- cells. Blocking the TWEAK-Fn14-RelB signaling cascade with a small-molecule inhibitor of Fn14 prolongs survival following carboplatin chemotherapy in a mouse model of ovarian cancer. These data provide new insights into ovarian cancer CSC biology and highlight a signaling axis that should be explored for therapeutic development. IMPLICATIONS: This study identifies a unique mechanism for the induction of ovarian cancer stem cells that may serve as a novel therapeutic target for preventing relapse.


Assuntos
NF-kappa B , Neoplasias Ovarianas , Humanos , Animais , Feminino , Camundongos , NF-kappa B/metabolismo , Fatores de Necrose Tumoral/genética , Fatores de Necrose Tumoral/metabolismo , Carboplatina/farmacologia , Receptores do Fator de Necrose Tumoral/genética , Receptor de TWEAK/genética , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/tratamento farmacológico , Citocina TWEAK , Transdução de Sinais/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Células-Tronco/metabolismo , Fator de Transcrição RelB/metabolismo
12.
J Exp Clin Cancer Res ; 42(1): 270, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858159

RESUMO

BACKGROUND: Epithelial ovarian cancer (EOC) is a global health burden, with the poorest five-year survival rate of the gynecological malignancies due to diagnosis at advanced stage and high recurrence rate. Recurrence in EOC is driven by the survival of chemoresistant, stem-like tumor-initiating cells (TICs) that are supported by a complex extracellular matrix and immunosuppressive microenvironment. To target TICs to prevent recurrence, we identified genes critical for TIC viability from a whole genome siRNA screen. A top hit was the cancer-associated, proteoglycan subunit synthesis enzyme UDP-glucose dehydrogenase (UGDH). METHODS: Immunohistochemistry was used to characterize UGDH expression in histological and molecular subtypes of EOC. EOC cell lines were subtyped according to the molecular subtypes and the functional effects of modulating UGDH expression in vitro and in vivo in C1/Mesenchymal and C4/Differentiated subtype cell lines was examined. RESULTS: High UGDH expression was observed in high-grade serous ovarian cancers and a distinctive survival prognostic for UGDH expression was revealed when serous cancers were stratified by molecular subtype. High UGDH was associated with a poor prognosis in the C1/Mesenchymal subtype and low UGDH was associated with poor prognosis in the C4/Differentiated subtype. Knockdown of UGDH in the C1/mesenchymal molecular subtype reduced spheroid formation and viability and reduced the CD133 + /ALDH high TIC population. Conversely, overexpression of UGDH in the C4/Differentiated subtype reduced the TIC population. In co-culture models, UGDH expression in spheroids affected the gene expression of mesothelial cells causing changes to matrix remodeling proteins, and fibroblast collagen production. Inflammatory cytokine expression of spheroids was altered by UGDH expression. The effect of UGDH knockdown or overexpression in the C1/ Mesenchymal and C4/Differentiated subtypes respectively was tested on mouse intrabursal xenografts and showed dynamic changes to the tumor stroma. Knockdown of UGDH improved survival and reduced tumor burden in C1/Mesenchymal compared to controls. CONCLUSIONS: These data show that modulation of UGDH expression in ovarian cancer reveals distinct roles for UGDH in the C1/Mesenchymal and C4/Differentiated molecular subtypes of EOC, influencing the tumor microenvironmental composition. UGDH is a strong potential therapeutic target in TICs, for the treatment of EOC, particularly in patients with the mesenchymal molecular subtype.


Assuntos
Carcinoma Epitelial do Ovário , Neoplasias Ovarianas , Microambiente Tumoral , Uridina Difosfato Glucose Desidrogenase , Animais , Feminino , Humanos , Camundongos , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Prognóstico , RNA Interferente Pequeno/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Uridina Difosfato Glucose Desidrogenase/genética , Uridina Difosfato Glucose Desidrogenase/imunologia
13.
Front Oncol ; 12: 1052457, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465383

RESUMO

Insulin-like growth factor binding proteins (IGFBPs) and the associated signaling components in the insulin-like growth factor (IGF) pathway regulate cell differentiation, proliferation, apoptosis, and adhesion. Of the IGFBPs, insulin-like growth factor binding protein 5 (IGFBP5) is the most evolutionarily conserved with a dynamic range of IGF-dependent and -independent functions, and studies on the actions of IGFBP5 in cancer have been somewhat paradoxical. In cancer, the IGFBPs respond to external stimuli to modulate disease progression and therapeutic responsiveness in a context specific manner. This review discusses the different roles of IGF signaling and IGFBP5 in disease with an emphasis on discoveries within the last twenty years, which underscore a need to clarify the IGF-independent actions of IGFBP5, the impact of its subcellular localization, the differential activities of each of the subdomains, and the response to elements of the tumor microenvironment (TME). Additionally, recent advances addressing the role of IGFBP5 in resistance to cancer therapeutics will be discussed. A better understanding of the contexts in which IGFBP5 functions will facilitate the discovery of new mechanisms of cancer progression that may lead to novel therapeutic opportunities.

14.
Cancers (Basel) ; 13(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445692

RESUMO

The identification of tumor-initiating cells (TICs) has traditionally relied on surface markers including CD133, CD44, CD117, and the aldehyde dehydrogenase (ALDH) enzyme, which have diverse expression across samples. A more reliable indication of TICs may include the expression of embryonic transcription factors that support long-term self-renewal, multipotency, and quiescence. We hypothesize that SOX2, OCT4, and NANOG will be enriched in ovarian TICs and may indicate TICs with high relapse potential. We evaluated a panel of eight ovarian cancer cell lines grown in standard 2-D culture or in spheroid-enriching 3-D culture, and correlated expression with growth characteristics, TIC marker expression, and chemotherapy resistance. RNA-sequencing showed that cell cycle regulation pathways involving SOX2 were elevated in 3-D conditions. HGSOC lines had longer doubling-times, greater chemoresistance, and significantly increased expression of SOX2, OCT4, and NANOG in 3-D conditions. CD117+ or ALDH+/CD133+ cells had increased SOX2, OCT4, and NANOG expression. Limiting dilution in in vivo experiments implicated SOX2, but not OCT4 or NANOG, with early tumor-initiation. An analysis of patient data suggested a stronger role for SOX2, relative to OCT4 or NANOG, for tumor relapse potential. Overall, our findings suggest that SOX2 may be a more consistent indicator of ovarian TICs that contribute to tumor repopulation following chemotherapy. Future studies evaluating SOX2 in TIC biology will increase our understanding of the mechanisms that drive ovarian cancer relapse.

15.
J Neurosci ; 29(16): 5295-307, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-19386926

RESUMO

Chronic morphine administration may alter the expression of hundreds to thousands of genes. However, only a subset of these genes is likely involved in analgesic tolerance. In this report, we used a behavior genetics strategy to identify candidate genes specifically linked to the development of morphine tolerance. Two inbred genotypes [C57BL/6J (B6), DBA2/J (D2)] and two reciprocal congenic genotypes (B6D2, D2B6) with the proximal region of chromosome 10 (Chr10) introgressed into opposing backgrounds served as the behavior genetic filter. Tolerance after therapeutically relevant doses of morphine developed most rapidly in the B6 followed by the B6D2 genotype and did not develop in the D2 mice and only slightly in the D2B6 animals indicating a strong influence of the proximal region of Chr10 in the development of tolerance. Gene expression profiling and pattern matching identified 64, 53, 86, and 123 predisposition genes and 81, 96, 106, and 82 tolerance genes in the periaqueductal gray (PAG), prefrontal cortex, temporal lobe, and ventral striatum, respectively. A potential gene network was identified in the PAG in which 19 of the 34 genes were strongly associated with tolerance. Eleven of the network genes were found to reside in quantitative trait loci previously associated with morphine-related behaviors, whereas seven were predictive of tolerance (morphine-naive condition). Overall, the genes modified by chronic morphine administration show a strong presence in canonical pathways representative of neuroadaptation. A potentially significant role for the micro-RNA and epigenetic mechanisms in response to chronic administration of pharmacologically relevant doses of morphine was highlighted by candidate genes Dicer and H19.


Assuntos
Analgésicos Opioides/farmacologia , Tolerância a Medicamentos/genética , Redes Reguladoras de Genes/genética , Morfina/farmacologia , Animais , Relação Dose-Resposta a Droga , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Genética Comportamental/métodos , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos
16.
PLoS Comput Biol ; 5(1): e1000274, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19180177

RESUMO

Complex phenotypes such as the transformation of a normal population of cells into cancerous tissue result from a series of molecular triggers gone awry. We describe a method that searches for a genetic network consistent with expression changes observed under the knock-down of a set of genes that share a common role in the cell, such as a disease phenotype. The method extends the Nested Effects Model of Markowetz et al. (2005) by using a probabilistic factor graph to search for a network representing interactions among these silenced genes. The method also expands the network by attaching new genes at specific downstream points, providing candidates for subsequent perturbations to further characterize the pathway. We investigated an extension provided by the factor graph approach in which the model distinguishes between inhibitory and stimulatory interactions. We found that the extension yielded significant improvements in recovering the structure of simulated and Saccharomyces cerevisae networks. We applied the approach to discover a signaling network among genes involved in a human colon cancer cell invasiveness pathway. The method predicts several genes with new roles in the invasiveness process. We knocked down two genes identified by our approach and found that both knock-downs produce loss of invasive potential in a colon cancer cell line. Nested effects models may be a powerful tool for inferring regulatory connections and genes that operate in normal and disease-related processes.


Assuntos
Neoplasias do Colo/genética , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes/fisiologia , Inativação Gênica , Saccharomyces cerevisiae/genética , Algoritmos , Neoplasias do Colo/patologia , Simulação por Computador , Interpretação Estatística de Dados , Células HT29 , Humanos , Modelos Genéticos , Invasividade Neoplásica , Distribuição Normal , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais
17.
Cancers (Basel) ; 12(6)2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32575908

RESUMO

Disease recurrence is the major cause of morbidity and mortality of ovarian cancer (OC). In terms of maintenance therapies after platinum-based chemotherapy, PARP inhibitors significantly improve the overall survival of patients with BRCA mutations but is of little benefit to patients without homologous recombination deficiency (HRD). The stem-like tumor-initiating cell (TIC) population within OC tumors are thought to contribute to disease recurrence and chemoresistance. Therefore, there is a need to identify drugs that target TICs to prevent relapse in OC without HRD. RNA sequencing analysis of OC cells grown in TIC conditions revealed a strong enrichment of genes involved in drug metabolism, oxidative phosphorylation and reactive oxygen species (ROS) pathways. Concurrently, a high-throughput drug screen identified drugs that showed efficacy against OC cells grown as TICs compared to adherent cells. Four drugs were chosen that affected drug metabolism and ROS response: disulfiram, bardoxolone methyl, elesclomol and salinomycin. The drugs were tested in vitro for effects on viability, sphere formation and markers of stemness CD133 and ALDH in TICs compared to adherent cells. The compounds promoted ROS accumulation and oxidative stress and disulfiram, elesclomol and salinomycin increased cell death following carboplatin treatment compared to carboplatin alone. Disulfiram and salinomycin were effective in a post-surgery, post-chemotherapy OC relapse model in vivo, demonstrating that enhancing oxidative stress in TICs can prevent OC recurrence.

18.
Cancer Res ; 77(24): 6927-6940, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29074539

RESUMO

Understanding the mechanisms supporting tumor-initiating cells (TIC) is vital to combat advanced-stage recurrent cancers. Here, we show that in advanced ovarian cancers NFκB signaling via the RelB transcription factor supports TIC populations by directly regulating the cancer stem-like associated enzyme aldehyde dehydrogenase (ALDH). Loss of RelB significantly inhibited spheroid formation, ALDH expression and activity, chemoresistance, and tumorigenesis in subcutaneous and intrabursal mouse xenograft models of human ovarian cancer. RelB also affected expression of the ALDH gene ALDH1A2 Interestingly, classical NFκB signaling through the RelA transcription factor was equally important for tumorigenesis in the intrabursal model, but had no effect on ALDH. In this case, classical signaling via RelA was essential for proliferating cells, whereas the alternative signaling pathway was not. Our results show how NFκB sustains diverse cancer phenotypes via distinct classical and alternative signaling pathways, with implications for improved understanding of disease recurrence and therapeutic response. Cancer Res; 77(24); 6927-40. ©2017 AACR.


Assuntos
Carcinogênese/genética , Proliferação de Células/genética , Isoenzimas/metabolismo , Células-Tronco Neoplásicas/fisiologia , Neoplasias Ovarianas/genética , Retinal Desidrogenase/metabolismo , Fator de Transcrição RelA/fisiologia , Família Aldeído Desidrogenase 1 , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , NF-kappa B/genética , NF-kappa B/fisiologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Transdução de Sinais/genética , Fator de Transcrição RelA/genética
19.
Oncotarget ; 8(31): 51402-51415, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28881656

RESUMO

Ovarian cancer (OC) is a heterogeneous disease characterized by defective DNA repair. Very few targets are universally expressed in the high grade serous (HGS) subtype. We previously identified that CHK1 was overexpressed in most of HGSOC. Here, we sought to understand the DNA damage response (DDR) to CHK1 inhibition and increase the anti-tumor activity of this pathway. We found BRD4 suppression either by siRNA or BRD4 inhibitor JQ1 enhanced the cytotoxicity of CHK1 inhibition. Interestingly, BRD4 was amplified and/or upregulated in a subset of HGSOC with statistical correlation to overall survival. BRD4 inhibition increased CBX5 (HP1α) level. CHK1 inhibitor induced DDR marker, γ-H2AX, but BRD4 suppression did not. Furthermore, nuclear localization of CBX5 and γ-H2AX was mutually exclusive in BRD4-and CHK1-inhibited cells, suggesting BRD4 facilitates DDR by repressing CBX5. Our results provide a strong rationale for clinical investigation of CHK1 and BRD4 co-inhibition, especially for HGSOC patients with BRD4 overexpression.

20.
J Vis Exp ; (96)2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25742116

RESUMO

Evidence suggests that small subpopulations of tumor cells maintain a unique self-renewing and differentiation capacity and may be responsible for tumor initiation and/or relapse. Clarifying the mechanisms by which these tumor-initiating cells (TICs) support tumor formation and progression could lead to the development of clinically favorable therapies. Ovarian cancer is a heterogeneous and highly recurrent disease. Recent studies suggest TICs may play an important role in disease biology. We have identified culture conditions that enrich for TICs from ovarian cancer cell lines. Growing either adherent cells or non-adherent 'floater' cells in a low attachment plate with serum free media in the presence of growth factors supports the propagation of ovarian cancer TICs with stem cell markers (CD133 and ALDH activity) and increased tumorigenicity without the need to physically separate the TICs from other cell types within the culture. Although the presence of floater cells is not common for all cell lines, this population of cells with innate low adherence may have high tumorigenic potential.Compared to adherent cells grown in the presence of serum, TICs readily form spheres, are significantly more tumorigenic in mice, and express putative stem cell markers. The conditions are easy to establish in a timely manner and can be used to study signaling pathways important for maintaining stem characteristics, and to identify drugs or combinations of drugs targeting TICs. The culture conditions described herein are applicable for a variety of ovarian cancer cells of epithelial origin and will be critical in providing new information about the role of TICs in tumor initiation, progression, and relapse.


Assuntos
Técnicas de Cultura de Células/métodos , Neoplasias Epiteliais e Glandulares/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/patologia , Animais , Carcinoma Epitelial do Ovário , Diferenciação Celular/fisiologia , Transformação Celular Neoplásica/patologia , Meios de Cultura Livres de Soro , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Recidiva Local de Neoplasia/patologia , Esferoides Celulares , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA