RESUMO
As the use of microbial inoculants in agriculture rises, it becomes important to understand how the environment may influence microbial ability to promote plant growth. This work examines whether there are light dependencies in the biological functions of Azospirillum brasilense, a commercialized prolific grass-root colonizer. Though classically defined as non-phototrophic, A. brasilense possesses photoreceptors that could perceive light conducted through its host's roots. Here, we examined the light dependency of atmospheric biological nitrogen fixation (BNF) and auxin biosynthesis along with supporting processes including ATP biosynthesis, and iron and manganese uptake. Functional mutants of A. brasilense were studied in light and dark environments: HM053 (high BNF and auxin production), ipdC (capable of BNF, deficient in auxin production), and FP10 (capable of auxin production, deficient in BNF). HM053 exhibited the highest rate of nitrogenase activity with the greatest light dependency comparing iterations in light and dark environments. The ipdC mutant showed similar behavior with relatively lower nitrogenase activity observed, while FP10 did not show a light dependency. Auxin biosynthesis showed strong light dependencies in HM053 and FP10 strains, but not for ipdC. Ferrous iron is involved in BNF, and a light dependency was observed for microbial 59Fe2+ uptake in HM053 and ipdC, but not FP10. Surprisingly, a light dependency for 52Mn2+ uptake was only observed in ipdC. Finally, ATP biosynthesis was sensitive to light across all three mutants favoring blue light over red light compared to darkness with observed ATP levels in descending order for HM053 > ipdC > FP10.
RESUMO
Among the PGPB, the genus Azospirillum-with an emphasis on A. brasilense-is likely the most studied microorganism for mitigation of plant stress. Here, we report the investigation of functional mutants HM053, ipdC and FP10 of A. brasilense to understand how the biological functions of these microorganisms can affect host Zn uptake. HM053 is a Nif+ constitutively expressed strain that hyper-fixes N2 and produces high levels of the plant's relevant hormone auxin. FP10 is a Nif- strain deficient in N2-fixation. ipdC is a strain that is deficient in auxin production but fixes N2. Zn uptake was measured in laboratory-based studies of 3-week-old plants using radioactive 65Zn2+ (t½ 244 days). Principal Component Analysis was applied to draw out correlations between microbial functions and host 65Zn2+ accumulation. Additionally, statistical correlations were made to our prior data on plant uptake of radioactive 59Fe3+ and 59Fe2+. These correlations showed that low microbial auxin-producing capacity resulted in the greatest accumulation of 65Zn. Just the opposite effect was noted for 59Fe where high microbial auxin-producing capacity resulted in the greatest accumulation of that tracer.