Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Chembiochem ; 25(12): e202300789, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38613462

RESUMO

The human glucose-regulated protein GRP78 is a human chaperone that translocactes to the cell surface when cells are under stress. Theoretical studies suggested it could be involved in SARS-CoV-2 virus entry to cells. In this work, we used in vitro surface plasmon resonance-based assays to show that human GRP78 indeed binds to SARS-CoV-2 spike protein. We have designed and synthesised cyclic peptides based on the loop structure of amino acids 480-488 of the SARS-CoV-2 spike protein S1 domain from the Wuhan and Omicron variants and showed that both peptides bind to GRP78. Consistent with the greater infectiousness of the Omicron variant, the Omicron-derived peptide displays slower dissociation from the target protein. Both peptides significantly inhibit the binding of wild-type S1 protein to the human protein GRP78 suggesting that further development of these cyclic peptide motifs may provide a viable route to novel anti-SARS-CoV-2 agents.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico , Peptídeos Cíclicos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo , Ligação Proteica , COVID-19/virologia , COVID-19/metabolismo
2.
J Nat Prod ; 86(3): 566-573, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36917740

RESUMO

The subtilisin-like macrocyclase PatGmac is produced by the marine cyanobacterium Prochloron didemni. This enzyme is involved in the last step of the biosynthesis of patellamides, a cyanobactin type of ribosomally expressed and post-translationally modified cyclic peptides. PatGmac recognizes, cleaves, and cyclizes precursor peptides after a specific recognition motif comprised of a C-terminal tail with the sequence motif -AYDG. The result is the native macrocyclic patellamide, which has eight amino acid residues. Macrocyclase activity can be exploited by incorporating that motif in other short linear peptide precursors, which then are formed into head-to-tail cyclized peptides. Here, we explore the possibility of using PatGmac in the cyclization of peptides larger than the patellamides, namely, the PawS-derived peptide sunflower trypsin inhibitor-1 (SFTI-1) and the cyclotide kalata B1. These peptides fall under two distinct families of disulfide constrained macrocyclic plant peptides. They are both implicated as scaffolds for drug design due to their structures and unusual stability. We show that PatGmac can be used to efficiently cyclize the 14 amino acid residue long SFTI-1, but less so the 29 amino acid residue long kalata B1.


Assuntos
Ciclotídeos , Ciclotídeos/química , Ciclização , Peptídeos Cíclicos/química , Aminoácidos/metabolismo , Tripsina/química , Tripsina/metabolismo
3.
Angew Chem Int Ed Engl ; 62(16): e202215979, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36815722

RESUMO

Aromatic prenyltransferases from cyanobactin biosynthetic pathways catalyse the chemoselective and regioselective intramolecular transfer of prenyl/geranyl groups from isoprene donors to an electron-rich position in these macrocyclic and linear peptides. These enzymes often demonstrate relaxed substrate specificity and are considered useful biocatalysts for structural diversification of peptides. Herein, we assess the isoprene donor specificity of the N1-tryptophan prenyltransferase AcyF from the anacyclamide A8P pathway using a library of 22 synthetic alkyl pyrophosphate analogues, of which many display reactive groups that are amenable to additional functionalization. We further used AcyF to introduce a reactive moiety into a tryptophan-containing cyclic peptide and subsequently used click chemistry to fluorescently label the enzymatically modified peptide. This chemoenzymatic strategy allows late-stage modification of peptides and is useful for many applications.


Assuntos
Dimetilaliltranstransferase , Triptofano , Triptofano/química , Peptídeos , Peptídeos Cíclicos/química , Butadienos , Hemiterpenos , Dimetilaliltranstransferase/metabolismo , Especificidade por Substrato
4.
Anal Biochem ; 592: 113583, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31945311

RESUMO

Improved health span and lifespan extension in a wide phylogenetic range of species is associated with the induction of the environmental cell stress response through a signalling pathway regulated by the transcription factor Nrf2. Phytochemicals which stimulate this response may form part of therapeutic interventions which stimulate endogenous cytoprotective mechanisms, thereby delaying the onset of age-related diseases and promoting healthy ageing in humans. In order to identify compounds that activate the Nrf2 pathway, a cell-based reporter system was established in HepG2 cells using a luciferase reporter gene under the control of the Nqo1 promoter. Sulforaphane, an isothiocyanate derived from cruciferous vegetables and a known activator of the Nrf2 pathway, was used to validate the reporter system. The transfected cell line HepG2 C1 was subsequently used to screen natural product libraries. Five compounds were identified as activating the bioluminescent reporter by greater than 5-fold. The two most potent compounds, MBC20 and MBC37, were further characterised and shown to stimulate endogenous cytoprotective gene and protein expression. The bioluminescent reporter system will allow rapid, in vitro identification of novel compounds that have the potential to improve health span through activation of the environmental stress response.


Assuntos
Medições Luminescentes/métodos , Fator 2 Relacionado a NF-E2/metabolismo , Compostos Fitoquímicos/farmacologia , Antioxidantes/metabolismo , Células Hep G2 , Humanos
5.
Molecules ; 25(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093030

RESUMO

As opposed to small molecules, macrocyclic peptides possess a large surface area and are recognised as promising candidates to selectively treat diseases by disrupting specific protein-protein interactions (PPIs). Due to the difficulty in predicting cyclopeptide conformations in solution, the de novo design of bioactive cyclopeptides remains significantly challenging. In this study, we used the combination of conformational analyses and molecular docking studies to design a new cyclopeptide inhibitor of the interaction between the human tumour necrosis factor alpha (TNFα) and its receptor TNFR-1. This interaction is a key in mediating the inflammatory response to tissue injury and infection in humans, and it is also an important causative factor of rheumatoid arthritis, psoriasis and inflammatory bowel disease. The solution state NMR structure of the cyclopeptide was determined, which helped to deduce its mode of interaction with TNFα. TNFα sensor cells were used to evaluate the biological activity of the peptide.


Assuntos
Desenho de Fármacos , Peptídeos Cíclicos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Células HEK293 , Humanos , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
6.
Biochemistry ; 57(50): 6860-6867, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30452235

RESUMO

Aromatic prenylation is an important step in the biosynthesis of many natural products and leads to an astonishing diversity of chemical structures. Cyanobactin pathways frequently encode aromatic prenyltransferases that catalyze the prenylation of these macrocyclic and linear peptides. Here we characterized the anacyclamide ( acy) biosynthetic gene cluster from Anabaena sp. UHCC-0232. Partial reconstitution of the anacyclamide pathway, heterologous expression, and in vitro biochemical characterization demonstrate that the AcyF enzyme, encoded in the acy biosynthetic gene cluster, is a Trp N-prenyltransferase. Bioinformatic analysis suggests the monophyletic origin and rapid diversification of cyanobactin prenyltransferase enzymes and the multiple origins of N-1 Trp prenylation in prenylated natural products. The AcyF enzyme displayed high flexibility toward a range of Trp-containing substrates and represents an interesting new tool for biocatalytic applications.


Assuntos
Dimetilaliltranstransferase/metabolismo , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Sequência de Aminoácidos , Anabaena/enzimologia , Anabaena/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Vias Biossintéticas , Dimetilaliltranstransferase/genética , Genes Bacterianos , Família Multigênica , Filogenia , Prenilação , Especificidade por Substrato , Triptofano/química
7.
Nat Chem Biol ; 11(8): 558-563, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26098679

RESUMO

Regioselective modification of amino acids within the context of a peptide is common to a number of biosynthetic pathways, and many of the resulting products have potential as therapeutics. The ATP-dependent enzyme LynD heterocyclizes multiple cysteine residues to thiazolines within a peptide substrate. The enzyme requires the substrate to have a conserved N-terminal leader for full activity. Catalysis is almost insensitive to immediately flanking residues in the substrate, suggesting that recognition occurs distant from the active site. Nucleotide and peptide substrate co-complex structures of LynD reveal that the substrate leader peptide binds to and extends the ß-sheet of a conserved domain of LynD, whereas catalysis is accomplished in another conserved domain. The spatial segregation of catalysis from recognition combines seemingly contradictory properties of regioselectivity and promiscuity, and it appears to be a conserved strategy in other peptide-modifying enzymes. A variant of LynD that efficiently processes substrates without a leader peptide has been engineered.


Assuntos
Proteínas de Bactérias/química , Peptídeos Cíclicos/química , Processamento de Proteína Pós-Traducional , Sinais Direcionadores de Proteínas , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Cianobactérias/química , Cianobactérias/metabolismo , Ciclização , Cisteína/química , Cisteína/metabolismo , Expressão Gênica , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Engenharia de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Especificidade por Substrato , Tiazóis/química , Tiazóis/metabolismo
8.
Chemistry ; 22(37): 13089-97, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27389424

RESUMO

Cyclic peptides are a class of compounds with high therapeutic potential, possessing bioactivities including antitumor and antiviral (including anti-HIV). Despite their desirability, efficient design and production of these compounds has not been achieved to date. The catalytic mechanism of patellamide macrocyclization by the PatG macrocyclase domain has been computationally investigated by using quantum mechanics/molecular mechanics methodology, specifically ONIOM(M06/6-311++G(2d,2p):ff94//B3LYP/6-31G(d):ff94). The mechanism proposed herein begins with a proton transfer from Ser783 to His 618 and from the latter to Asp548. Nucleophilic attack of Ser783 on the substrate leads to the formation of an acyl-enzyme covalent complex. The leaving group Ala-Tyr-Asp-Gly (AYDG) of the substrate is protonated by the substrate's N terminus, leading to the breakage of the P1-P1' bond. Finally, the substrate's N terminus attacks the P1 residue, decomposing the acyl-enzyme complex forming the macrocycle. The formation and decomposition of the acyl-enzyme complex have the highest activation free energies (21.1 kcal mol(-1) and 19.8 kcal mol(-1) respectively), typical of serine proteases. Understanding the mechanism behind the macrocyclization of patellamides will be important to the application of the enzymes in the pharmaceutical and biotechnological industries.

10.
Pharmacol Res ; 107: 407-414, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27041481

RESUMO

Marine sponges are found to be a wide source of bioactive compounds with different effects such as anti-inflammatory or anticancer actions among others. Cyclophilin A (Cyp A) is a target protein implicated in the mechanism of action of immunosuppressive compounds such as Cyclosporine A (CsA). In the present paper we studied the binding between 4 Spongionella compounds (Gracilins H, A, L and Tetrahydroaplysulphurin-1) and Cyp A immobilized over a CM5 sensor chip. Thus, we found that Spongionella compounds showed to have similar binding affinities than CsA with dissociation equilibrium constant in the range. Next, the effect of these Spongionella isolated compounds was tested over calcineurin phosphatase activity. The same than CsA, Gracilin H, A and Tetrahydroaplysulphurin-1 were able to inhibit phosphatase activity once the complex between Cyp A-CsA/Spongionella compounds was formed. The ability to avoid the dephosphorylation of NFATc1 was also checked in human T cells isolated from peripheral blood. First, cells were pre-treated with Spongionella compounds or CsA following by Concanavalin A (Con A) stimulation. In these conditions nuclear NFATc1 levels were diminished either by CsA or Gracilin A, L, and Tetrahydroaplysulphurin-1 treatment. Moreover, as happens with CsA due to the inhibition of NFATc1, Interleukine-2 (IL-2) released to the culture medium was significantly decreased with all Spongionella compounds. Results conclude that, Spongionella derivatives preserve T lymphocytes from activation modulating the same pathway than CsA. Thus, this mechanism of action suggests that these compounds could be interesting candidates in drug development as immunosuppressive or anti-inflammatory drugs.


Assuntos
Ciclosporina/metabolismo , Diterpenos/metabolismo , Imunossupressores/metabolismo , Poríferos/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Diterpenos/farmacologia , Humanos , Interleucina-2/metabolismo , Fatores de Transcrição NFATC/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
11.
Bioorg Med Chem ; 24(2): 113-22, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26692349

RESUMO

Fungi of the genus Penicillium produce unique and chemically diverse biologically active secondary metabolites, including indole alkaloids. The role of dysregulated hepatocyte growth factor (HGF) and its receptor, c-Met, in the development and progression of breast carcinoma is documented. The goal of this work is to explore the chemistry and bioactivity of the secondary metabolites of the endophytic Penicillium chrysogenum cultured from the leaf of the olive tree Olea europea, collected in its natural habitat in Egypt. This fungal extract showed good inhibitory activities against the proliferation and migration of several human breast cancer lines. The CH2Cl2 extract of P. chrysogenum mycelia was subjected to bioguided chromatographic separation to afford three known indole alkaloids; meleagrin (1), roquefortine C (2) and DHTD (3). Meleagrin inhibited the growth of the human breast cancer cell lines MDA-MB-231, MDA-468, BT-474, SK BR-3, MCF7 and MCF7-dox, while similar treatment doses were found to have no effect on the growth and viability of the non-tumorigenic human mammary epithelial cells MCF10A. Meleagrin also showed excellent ATP competitive c-Met inhibitory activity in Z-Lyte assay, which was further confirmed via molecular docking studies and Western blot analysis. In addition, meleagrin treatment caused a dose-dependent inhibition of HGF-induced cell migration, and invasion of breast cancer cell lines. Meleagrin treatment potently suppressed the invasive triple negative breast tumor cell growth in an orthotopic athymic nude mice model, promoting this unique natural product from hit to a lead rank. The indole alkaloid meleagrin is a novel lead c-Met inhibitory entity useful for the control of c-Met-dependent metastatic and invasive breast malignancies.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Alcaloides Indólicos/farmacologia , Olea/microbiologia , Ovomucina/farmacologia , Penicillium chrysogenum/química , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Epiteliais/efeitos dos fármacos , Feminino , Humanos , Alcaloides Indólicos/química , Alcaloides Indólicos/isolamento & purificação , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , Invasividade Neoplásica/patologia , Ovomucina/química , Ovomucina/isolamento & purificação , Proteínas Proto-Oncogênicas c-met/metabolismo , Relação Estrutura-Atividade
12.
Tetrahedron ; 72(52): 8603-8609, 2016 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-32818002

RESUMO

There is a growing interest in the use of cyclic peptides as therapeutics, but their efficient production is often the bottleneck in taking them forward in the development pipeline. We have recently developed a method to synthesise azole-containing cyclic peptides using enzymes derived from different cyanobactin biosynthetic pathways. Accurate quantification is crucial for calculation of the reaction yield and for the downstream biological testing of the products. In this study, we demonstrate the development and validation of two methods to accurately quantify these compounds in the reaction mixture and after purification. The first method involves the use of a HPLC coupled in parallel to an ESMS and an ICPMS, hence correlating the calculated sulfur content to the amount of cyclic peptide. The second method is an NMR ERETIC method for quantifying the solution concentration of cyclic peptides. These methods make the quantification of new compounds much easier as there is no need for the use of authentic standards when they are not available.

13.
Angew Chem Int Ed Engl ; 55(11): 3596-9, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26846478

RESUMO

Cyanobactins are a rapidly growing family of linear and cyclic peptides produced by cyanobacteria. Kawaguchipeptins A and B, two macrocyclic undecapeptides reported earlier from Microcystis aeruginosa NIES-88, are shown to be products of the cyanobactin biosynthetic pathway. The 9 kb kawaguchipeptin (kgp) gene cluster was identified in a 5.26 Mb draft genome of Microcystis aeruginosa NIES-88. We verified that this gene cluster is responsible for the production of the kawaguchipeptins through heterologous expression of the kgp gene cluster in Escherichia coli. The KgpF prenyltransferase was overexpressed and was shown to prenylate C-3 of Trp residues in both linear and cyclic peptides in vitro. Our findings serve to further enhance the structural diversity of cyanobactins to include tryptophan-prenylated cyclic peptides.


Assuntos
Dimetilaliltranstransferase/metabolismo , Triptofano/metabolismo , Sequência de Aminoácidos , Dimetilaliltranstransferase/química , Escherichia coli/genética , Genoma Bacteriano , Microcystis/genética , Família Multigênica
14.
Cell Physiol Biochem ; 37(2): 779-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26356268

RESUMO

BACKGROUND/AIMS: The effect of four secondary metabolites isolated from sponge Spongionella, gracilins H, A, L and tetrahydroaplysulphurin-1 on Calcium ion (Ca2+) fluxes were studied in SH-SY5Y neuroblastoma cells. METHODS AND RESULTS: These compounds did not modify cytosolic baseline Ca2+-levels. Nevertheless, when cytosolic Ca2+-influx through store operated calcium channels (SOC channels) was stimulated with Thapsigargin (Tg), a strong inhibition was observed in the presence of gracilin A, gracilin L and tetrahydroaplysulphurin-1. Since these compounds were able to protect mitochondria from oxidative stress, the role of this organelle in the Ca2+-influx inhibition was tested. In this sense, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) and Cyclosporine A (CsA) were used. Surprisingly, both the inhibitory effect over Tg-sensitive stores and Ca2+ influx through SOC channels produced by FCCP were abolished with different potencies by Spongionella compounds in a similar way than CsA. CsA is able to avoid Mitochondrial Permeability Transition Pore (mPTP) opening. As well as CsA, Spongionella compounds reverted mPTP opening induced by FCCP. In the case of CsA the mPTP blockade is due to the direct binding to Cyclophilin D (Cyp D), a mitochondrial matrix protein. This association was also observed between gracilin L and tetrahydroaplysulphurin-1 and Cyp D. Therefore, Spongionella compounds modulate mitochondrial activity by preventing mPTP opening by binding to Cyp D. CONCLUSIONS: These effects make Spongionella compounds as new family of compounds with promising activity in human diseases where mitochondrial alterations are implicated.


Assuntos
Cálcio/metabolismo , Diterpenos/farmacologia , Mitocôndrias/efeitos dos fármacos , Neuroblastoma/metabolismo , Poríferos/química , Animais , Canais de Cálcio/metabolismo , Linhagem Celular Tumoral , Ciclosporina/farmacologia , Humanos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Metabolismo Secundário , Tapsigargina/farmacologia
15.
Mar Drugs ; 12(10): 5197-208, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25325732

RESUMO

We report the structural characterization of a new pyrazinone analogue; butrepyrazinone, which was isolated from a new actinomycete strain Verrucosispora sp. K51G recovered from Ghanaian mangrove river sediment. Spectroscopy-guided fractionation led to the isolation of a compound from the fermentation culture and a combination of NMR spectroscopy, high-resolution mass spectrometry and computer-aided calculations revealed that butrepyrazinone (10) possesses an unusual methylation pattern on the pyrazinone ring. Butrepyrazinone (10), however, displayed no antibacterial activity against Gram-positive S. aureus ATCC 25923, the Gram-negative E. coli ATCC 25922 and a panel of clinical isolates of methicillin-resistant S. aureus (MRSA) strains, suggesting that 10 may act as a signal molecule for this strain. Although the same molecule has been synthesized previously, this is the first report to disclose the discovery of butrepyrazinone (10) from nature.


Assuntos
Actinobacteria/química , Actinomycetales/química , Antibacterianos/química , Metilação/efeitos dos fármacos , Pirazinas/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Sedimentos Geológicos/microbiologia , Gana , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Rios/microbiologia
16.
Mar Drugs ; 12(2): 999-1012, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24534843

RESUMO

A new actinomycete strain Micromonospora sp. K310 was isolated from Ghanaian mangrove river sediment. Spectroscopy-guided fractionation led to the isolation of two new compounds from the fermentation culture. One of the compounds is butremycin (2) which is the (3-hydroxyl) derivative of the known Streptomyces metabolite ikarugamycin (1) and the other compound is a protonated aromatic tautomer of 5'-methylthioinosine (MTI) (3). Both new compounds were characterized by 1D, 2D NMR and MS data. Butremycin (2) displayed weak antibacterial activity against Gram-positive S. aureus ATCC 25923, the Gram-negative E. coli ATCC 25922 and a panel of clinical isolates of methicillin-resistant S. aureus (MRSA) strains while 3 did not show any antibacterial activity against these microbes.


Assuntos
Antibacterianos/farmacologia , Lactamas Macrocíclicas/farmacologia , Metiltioinosina/análogos & derivados , Micromonospora/química , Antibacterianos/química , Antibacterianos/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Fermentação , Sedimentos Geológicos/microbiologia , Gana , Lactamas Macrocíclicas/química , Lactamas Macrocíclicas/isolamento & purificação , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Metiltioinosina/química , Metiltioinosina/isolamento & purificação , Metiltioinosina/farmacologia , Testes de Sensibilidade Microbiana , Rios/microbiologia , Staphylococcus aureus/efeitos dos fármacos
17.
Mar Drugs ; 12(2): 700-18, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24473170

RESUMO

The marine habitat provides a large number of structurally-diverse bioactive compounds for drug development. Marine sponges have been studied over many years and are found to be a rich source of these bioactive chemicals. This study is focused on the evaluation of the activity of six diterpene derivatives isolated from Spongionella sp. on mitochondrial function using an oxidative in vitro stress model. The test compounds include the Gracilins (A, H, K, J and L) and tetrahydroaplysulphurin-1. Compounds were co-incubated with hydrogen peroxide for 12 hours to determine their protective capacities and their effect on markers of apoptosis and Nrf2/ARE pathways was evaluated. Results conclude that Gracilins preserve neurons against oxidative damage, and that in particular, tetrahydroaplysulphurin-1 shows a complete neuroprotective activity. Oxidative stress is linked to mitochondrial dysfunction and consequently to neurodegenerative disorders like Parkinson and Alzheimer diseases, Friedreich ataxia or Amyotrophic lateral sclerosis. This neuroprotection against oxidation conditions suggest that these metabolites could be interesting lead candidates in drug development for neurodegenerative diseases.


Assuntos
Diterpenos/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Poríferos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Diterpenos/isolamento & purificação , Peróxido de Hidrogênio/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/fisiopatologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/isolamento & purificação
18.
Angew Chem Int Ed Engl ; 53(51): 14171-4, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25331823

RESUMO

Heterocycle-containing cyclic peptides are promising scaffolds for the pharmaceutical industry but their chemical synthesis is very challenging. A new universal method has been devised to prepare these compounds by using a set of engineered marine-derived enzymes and substrates obtained from a family of ribosomally produced and post-translationally modified peptides called the cyanobactins. The substrate precursor peptide is engineered to have a non-native protease cleavage site that can be rapidly cleaved. The other enzymes used are heterocyclases that convert Cys or Cys/Ser/Thr into their corresponding azolines. A macrocycle is formed using a macrocyclase enzyme, followed by oxidation of the azolines to azoles with a specific oxidase. The work is exemplified by the production of 17 macrocycles containing 6-9 residues representing 11 out of the 20 canonical amino acids.


Assuntos
Azóis/metabolismo , Oxirredutases/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos Cíclicos/biossíntese , Fósforo-Oxigênio Liases/metabolismo , Azóis/química , Conformação Molecular , Oxirredutases/química , Peptídeo Hidrolases/química , Peptídeos Cíclicos/química , Fósforo-Oxigênio Liases/química
19.
Peptides ; 173: 171139, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38142817

RESUMO

The recent COVID-19 pandemic shows the critical need for novel broad spectrum antiviral agents. Scorpion venoms are known to contain highly bioactive peptides, several of which have demonstrated strong antiviral activity against a range of viruses. We have generated the first annotated reference transcriptome for the Androctonus amoreuxi venom gland and used high performance liquid chromatography, transcriptome mining, circular dichroism and mass spectrometric analysis to purify and characterize twelve previously undescribed venom peptides. Selected peptides were tested for binding to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and inhibition of the spike RBD - human angiotensin-converting enzyme 2 (hACE2) interaction using surface plasmon resonance-based assays. Seven peptides showed dose-dependent inhibitory effects, albeit with IC50 in the high micromolar range (117-1202 µM). The most active peptide was synthesized using solid phase peptide synthesis and tested for its antiviral activity against SARS-CoV-2 (Lineage B.1.1.7). On exposure to the synthetic peptide of a human lung cell line infected with replication-competent SARS-CoV-2, we observed an IC50 of 200 nM, which was nearly 600-fold lower than that observed in the RBD - hACE2 binding inhibition assay. Our results show that scorpion venom peptides can inhibit the SARS-CoV-2 replication although unlikely through inhibition of spike RBD - hACE2 interaction as the primary mode of action. Scorpion venom peptides represent excellent scaffolds for design of novel anti-SARS-CoV-2 constrained peptides. Future studies should fully explore their antiviral mode of action as well as the structural dynamics of inhibition of target virus-host interactions.


Assuntos
Animais Peçonhentos , COVID-19 , Venenos de Escorpião , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , SARS-CoV-2/metabolismo , Escorpiões/química , Transcriptoma , Proteômica , Pandemias , Peptídeos/metabolismo , Antivirais/farmacologia , Venenos de Escorpião/química , Ligação Proteica
20.
Chembiochem ; 14(5): 564-7, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23483642

RESUMO

Ringing the changes: Selenazolines have applications in medicinal chemistry, but their synthesis is challenging. We report a new convenient and less toxic route to these heterocycles that starts from commercially available selenocysteine. The new route depends on a heterocyclase enzyme that creates oxazolines and thiazolines from serines/threonines and cysteines.


Assuntos
Complexos Multienzimáticos/metabolismo , Selênio/química , Sequência de Aminoácidos , Cisteína/química , Cisteína/metabolismo , Iodoacetamida/química , Oxazóis/química , Oxazóis/metabolismo , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Selênio/metabolismo , Selenocisteína/química , Selenocisteína/metabolismo , Serina/química , Serina/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tiazóis/química , Tiazóis/metabolismo , Treonina/química , Treonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA