Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 13(11): e1007091, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29108021

RESUMO

Cytokine signaling is responsible for coordinating conserved epithelial regeneration and immune responses in the digestive tract. In the Drosophila midgut, Upd3 is a major cytokine, which is induced in enterocytes (EC) and enteroblasts (EB) upon oral infection, and initiates intestinal stem cell (ISC) dependent tissue repair. To date, the genetic network directing upd3 transcription remains largely uncharacterized. Here, we have identified the key infection-responsive enhancers of the upd3 gene and show that distinct enhancers respond to various stresses. Furthermore, through functional genetic screening, bioinformatic analyses and yeast one-hybrid screening, we determined that the transcription factors Scalloped (Sd), Mothers against dpp (Mad), and D-Fos are principal regulators of upd3 expression. Our study demonstrates that upd3 transcription in the gut is regulated by the activation of multiple pathways, including the Hippo, TGF-ß/Dpp, and Src, as well as p38-dependent MAPK pathways. Thus, these essential pathways, which are known to control ISC proliferation cell-autonomously, are also activated in ECs to promote tissue turnover the regulation of upd3 transcription.


Assuntos
Infecções Bacterianas/metabolismo , Drosophila/genética , Drosophila/microbiologia , Transdução de Sinais , Animais , Infecções Bacterianas/genética , Proliferação de Células , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Enterócitos/metabolismo , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Intestinos/citologia , Intestinos/microbiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Pectobacterium carotovorum/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Pseudomonas/metabolismo , Células-Tronco/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
2.
Cell Rep ; 38(13): 110572, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35354023

RESUMO

Gut microbes play important roles in host physiology; however, the mechanisms underlying their impact remain poorly characterized. Here, we demonstrate that microbes not only influence gut physiology but also alter its epithelial composition. The microbiota and pathogens both influence intestinal stem cell (ISC) differentiation. Intriguingly, while the microbiota promotes ISC differentiation into enterocytes (EC), pathogens stimulate enteroendocrine cell (EE) fate and long-term accumulation of EEs in the midgut epithelium. Importantly, the evolutionarily conserved Drosophila NFKB (Relish) pushes stem cell lineage specification toward ECs by directly regulating differentiation factors. Conversely, the JAK-STAT pathway promotes EE fate in response to infectious damage. We propose a model in which the balance of microbial pattern recognition pathways, such as Imd-Relish, and damage response pathways, such as JAK-STAT, influence ISC differentiation, epithelial composition, and gut physiology.


Assuntos
Proteínas de Drosophila , Diferenciação Celular/fisiologia , Proteínas de Drosophila/metabolismo , Enterócitos/metabolismo , Intestinos , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
3.
Elife ; 102021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34553686

RESUMO

The gut is the primary interface between an animal and food, but how it adapts to qualitative dietary variation is poorly defined. We find that the Drosophila midgut plastically resizes following changes in dietary composition. A panel of nutrients collectively promote gut growth, which sugar opposes. Diet influences absolute and relative levels of enterocyte loss and stem cell proliferation, which together determine cell numbers. Diet also influences enterocyte size. A high sugar diet inhibits translation and uncouples intestinal stem cell proliferation from expression of niche-derived signals, but, surprisingly, rescuing these effects genetically was not sufficient to modify diet's impact on midgut size. However, when stem cell proliferation was deficient, diet's impact on enterocyte size was enhanced, and reducing enterocyte-autonomous TOR signaling was sufficient to attenuate diet-dependent midgut resizing. These data clarify the complex relationships between nutrition, epithelial dynamics, and cell size, and reveal a new mode of plastic, diet-dependent organ resizing.


Assuntos
Dieta , Drosophila melanogaster/crescimento & desenvolvimento , Trato Gastrointestinal/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Proliferação de Células , Drosophila melanogaster/fisiologia , Enterócitos/citologia , Feminino , Trato Gastrointestinal/citologia , Trato Gastrointestinal/fisiologia , Masculino , Nicho de Células-Tronco
4.
Cell Host Microbe ; 26(3): 412-425.e5, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31492656

RESUMO

Surviving infection requires immune and repair mechanisms. Developing organisms face the additional challenge of integrating these mechanisms with tightly controlled developmental processes. The larval Drosophila midgut lacks dedicated intestinal stem cells. We show that, upon infection, larvae perform limited repair using adult midgut precursors (AMPs). AMPs differentiate in response to damage to generate new enterocytes, transiently depleting their pool. Developmental delay allows for AMP reconstitution, ensuring the completion of metamorphosis. Notch signaling is required for the differentiation of AMPs into the encasing, niche-like peripheral cells (PCs), but not to differentiate PCs into enterocytes. Dpp (TGF-ß) signaling is sufficient, but not necessary, to induce PC differentiation into enterocytes. Infection-induced JAK-STAT pathway is both required and sufficient for differentiation of AMPs and PCs into new enterocytes. Altogether, this work highlights the constraints imposed by development on an organism's response to infection and demonstrates the transient use of adult precursors for tissue repair.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Trato Gastrointestinal/metabolismo , Larva/metabolismo , Animais , Diferenciação Celular , Modelos Animais de Doenças , Drosophila/microbiologia , Drosophila/fisiologia , Proteínas de Drosophila/genética , Enterócitos/metabolismo , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/patologia , Infecções por Bactérias Gram-Negativas/metabolismo , Infecções por Bactérias Gram-Negativas/patologia , Janus Quinases/metabolismo , Larva/imunologia , Larva/microbiologia , Metamorfose Biológica , Pectobacterium carotovorum/patogenicidade , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma
5.
Cell Rep ; 12(2): 346-58, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26146076

RESUMO

Deciphering contributions of specific cell types to organ function is experimentally challenging. The Drosophila midgut is a dynamic organ with five morphologically and functionally distinct regions (R1-R5), each composed of multipotent intestinal stem cells (ISCs), progenitor enteroblasts (EBs), enteroendocrine cells (EEs), enterocytes (ECs), and visceral muscle (VM). To characterize cellular specialization and regional function in this organ, we generated RNA-sequencing transcriptomes of all five cell types isolated by FACS from each of the five regions, R1-R5. In doing so, we identify transcriptional diversities among cell types and document regional differences within each cell type that define further specialization. We validate cell-specific and regional Gal4 drivers; demonstrate roles for transporter Smvt and transcription factors GATAe, Sna, and Ptx1 in global and regional ISC regulation, and study the transcriptional response of midgut cells upon infection. The resulting transcriptome database (http://flygutseq.buchonlab.com) will foster studies of regionalization, homeostasis, immunity, and cell-cell interactions.


Assuntos
Drosophila/metabolismo , Intestinos/citologia , Transcriptoma , Músculos Abdominais/citologia , Músculos Abdominais/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Drosophila/genética , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Enterócitos/citologia , Enterócitos/metabolismo , Células Enteroendócrinas/citologia , Células Enteroendócrinas/metabolismo , Fatores de Transcrição GATA/antagonistas & inibidores , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Mucosa Intestinal/metabolismo , Análise de Componente Principal , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição da Família Snail , Células-Tronco/citologia , Células-Tronco/metabolismo , Simportadores/metabolismo , Fatores de Transcrição/metabolismo
6.
Methods Mol Biol ; 1213: 171-82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25173382

RESUMO

Drosophila melanogaster presents itself as a powerful model for studying the somatic stem cells of the gut and how bacteria affect intestinal homeostasis. The Gal4/UAS/Gal80 (ts) system allows for temporally controlled expression of fluorescent proteins, RNAi knock-down, and other genetic constructs targeted to specific cell populations in the midgut. Similarly, FLP/FRT-mediated somatic recombinations in intestinal stem cells (ISCs) are utilized to visualize and analyze the clonal lineages of individual or populations of stem cells. Live imaging microscopy and immunofluorescence allow both qualitative and quantitative characterization of stem cell shape, proliferation, and differentiation. Here, we detail the use of these tools and techniques for studying gut performance during and following a bacterial infection in the adult fruit fly.


Assuntos
Drosophila melanogaster , Intestinos/citologia , Intestinos/microbiologia , Microbiota , Células-Tronco/citologia , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/microbiologia , Homeostase , Mucosa Intestinal/citologia , Mucosa Intestinal/microbiologia , Regeneração , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA