Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Comput Methods Appl Mech Eng ; 361: 112762, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32565583

RESUMO

The human heart beats as a result of multiscale nonlinear dynamics coupling subcellular to whole organ processes, achieving electrophysiologically-driven mechanical contraction. Computational cardiac modelling and simulation have achieved a great degree of maturity, both in terms of mathematical models of underlying biophysical processes and the development of simulation software. In this study, we present the detailed description of a human-based physiologically-based, and fully-coupled ventricular electromechanical modelling and simulation framework, and a sensitivity analysis focused on its mechanical properties. The biophysical detail of the model, from ionic to whole-organ, is crucial to enable future simulations of disease and drug action. Key novelties include the coupling of state-of-the-art human-based electrophysiology membrane kinetics, excitation-contraction and active contraction models, and the incorporation of a pre-stress model to allow for pre-stressing and pre-loading the ventricles in a dynamical regime. Through high performance computing simulations, we demonstrate that 50% to 200% - 1000% variations in key parameters result in changes in clinically-relevant mechanical biomarkers ranging from diseased to healthy values in clinical studies. Furthermore mechanical biomarkers are primarily affected by only one or two parameters. Specifically, ejection fraction is dominated by the scaling parameter of the active tension model and its scaling parameter in the normal direction ( k ort 2 ); the end systolic pressure is dominated by the pressure at which the ejection phase is triggered ( P ej ) and the compliance of the Windkessel fluid model ( C ); and the longitudinal fractional shortening is dominated by the fibre angle ( ϕ ) and k ort 2 . The wall thickening does not seem to be clearly dominated by any of the considered input parameters. In summary, this study presents in detail the description and implementation of a human-based coupled electromechanical modelling and simulation framework, and a high performance computing study on the sensitivity of mechanical biomarkers to key model parameters. The tools and knowledge generated enable future investigations into disease and drug action on human ventricles.

2.
Comput Methods Biomech Biomed Engin ; 24(4): 440-458, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33175592

RESUMO

CFD has emerged as a promising diagnostic tool for clinical trials, with tremendous potential. However, for real clinical applications to be useful, overall statistical findings from large population samples (e.g., multiple cases and models) are needed. Fully resolved solutions are not a priority, but rather rapid solutions with fast turn-around times are desired. This leads to the issue of what are the minimum modelling criteria for achieving adequate accuracy in respiratory flows for large-scale clinical applications, with a view to rapid turnaround times. This study simulated a highly-resolved solution using the large eddy simulation (LES) method as a reference case for comparison with lower resolution models that included larger time steps and no turbulence modelling. Differences in solutions were quantified by pressure loss, flow resistance, unsteadiness, turbulence intensity, and hysteresis effects from multiple cycles. The results demonstrated that sufficient accuracy could be achieved with lower resolution models if the mean flow was considered. Furthermore, to achieve an established transient result unaffected by the initial start-up quiescent effects, the results need to be taken from at least the second respiration cycle. It was also found that the exhalation phase exhibited strong turbulence. The results are expected to provide guidance for future modelling efforts for clinical and engineering applications requiring large numbers of cases using simplified modelling approaches.


Assuntos
Simulação por Computador , Nariz/fisiologia , Respiração , Expiração/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Análise Numérica Assistida por Computador , Pressão , Reologia
3.
J R Soc Interface ; 12(102): 20140880, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25551147

RESUMO

During a rapid inhalation, such as a sniff, the flow in the airways accelerates and decays quickly. The consequences for flow development and convective transport of an inhaled gas were investigated in a subject geometry extending from the nose to the bronchi. The progress of flow transition and the advance of an inhaled non-absorbed gas were determined using highly resolved simulations of a sniff 0.5 s long, 1 l s⁻¹ peak flow, 364 ml inhaled volume. In the nose, the distribution of airflow evolved through three phases: (i) an initial transient of about 50 ms, roughly the filling time for a nasal volume, (ii) quasi-equilibrium over the majority of the inhalation, and (iii) a terminating phase. Flow transition commenced in the supraglottic region within 20 ms, resulting in large-amplitude fluctuations persisting throughout the inhalation; in the nose, fluctuations that arose nearer peak flow were of much reduced intensity and diminished in the flow decay phase. Measures of gas concentration showed non-uniform build-up and wash-out of the inhaled gas in the nose. At the carina, the form of the temporal concentration profile reflected both shear dispersion and airway filling defects owing to recirculation regions.


Assuntos
Inalação/fisiologia , Brônquios/fisiologia , Simulação por Computador , Gases , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Anatômicos , Modelos Teóricos , Pescoço/diagnóstico por imagem , Ventilação Pulmonar , Radiografia Torácica , Respiração , Estresse Mecânico , Fatores de Tempo , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA