Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 20(1): 26-36, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33037136

RESUMO

The PI3K/AKT/mTOR pathway is often activated in lymphoma through alterations in PI3K, PTEN, and B-cell receptor signaling, leading to dysregulation of eIF4A (through its regulators, eIF4B, eIF4G, and PDCD4) and the eIF4F complex. Activation of eIF4F has a direct role in tumorigenesis due to increased synthesis of oncogenes that are dependent on enhanced eIF4A RNA helicase activity for translation. eFT226, which inhibits translation of specific mRNAs by promoting eIF4A1 binding to 5'-untranslated regions (UTR) containing polypurine and/or G-quadruplex recognition motifs, shows potent antiproliferative activity and significant in vivo efficacy against a panel of diffuse large B-cell lymphoma (DLBCL), and Burkitt lymphoma models with ≤1 mg/kg/week intravenous administration. Evaluation of predictive markers of sensitivity or resistance has shown that activation of eIF4A, mediated by mTOR signaling, correlated with eFT226 sensitivity in in vivo xenograft models. Mutation of PTEN is associated with reduced apoptosis in vitro and diminished efficacy in vivo in response to eFT226. In models evaluated with PTEN loss, AKT was stimulated without a corresponding increase in mTOR activation. AKT activation leads to the degradation of PDCD4, which can alter eIF4F complex formation. The association of eFT226 activity with PTEN/PI3K/mTOR pathway regulation of mRNA translation provides a means to identify patient subsets during clinical development.


Assuntos
Fator de Iniciação 4A em Eucariotos/antagonistas & inibidores , Linfoma de Células B/genética , Linfoma de Células B/patologia , Oncogenes , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fator de Iniciação 4A em Eucariotos/metabolismo , Feminino , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , PTEN Fosfo-Hidrolase/metabolismo , RNA Mensageiro/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Med Chem ; 63(11): 5879-5955, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32470302

RESUMO

Dysregulation of protein translation is a key driver for the pathogenesis of many cancers. Eukaryotic initiation factor 4A (eIF4A), an ATP-dependent DEAD-box RNA helicase, is a critical component of the eIF4F complex, which regulates cap-dependent protein synthesis. The flavagline class of natural products (i.e., rocaglamide A) has been shown to inhibit protein synthesis by stabilizing a translation-incompetent complex for select messenger RNAs (mRNAs) with eIF4A. Despite showing promising anticancer phenotypes, the development of flavagline derivatives as therapeutic agents has been hampered because of poor drug-like properties as well as synthetic complexity. A focused effort was undertaken utilizing a ligand-based design strategy to identify a chemotype with optimized physicochemical properties. Also, detailed mechanistic studies were undertaken to further elucidate mRNA sequence selectivity, key regulated target genes, and the associated antitumor phenotype. This work led to the design of eFT226 (Zotatifin), a compound with excellent physicochemical properties and significant antitumor activity that supports clinical development.


Assuntos
Benzofuranos/química , Desenho de Fármacos , Fator de Iniciação 4A em Eucariotos/antagonistas & inibidores , Animais , Benzofuranos/farmacocinética , Benzofuranos/uso terapêutico , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Feminino , Meia-Vida , Humanos , Ligantes , Camundongos , Camundongos Nus , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Ratos , Relação Estrutura-Atividade
3.
Oncotarget ; 7(29): 45959-45975, 2016 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-27323855

RESUMO

The RON tyrosine kinase receptor is under investigation as a novel target in pancreatic cancer. While RON mutations are uncommon, RON isoforms are produced in cancer cells via a variety of mechanisms. In this study we sought to: 1) characterize RON isoform expression in pancreatic cancer, 2) investigate mechanisms that regulate isoform expression, and 3) determine how various isoforms effect gene expression, oncogenic phenotypes and responses to RON directed therapies. We quantified RON transcripts in human pancreatic cancer and found expression levels 2500 fold that of normal pancreas with RON isoform expression comprising nearly 50% of total transcript. RNA seq studies revealed that the short form (sfRON) and P5P6 isoforms which have ligand independent activity, induce markedly different patterns of gene expression than wild type RON. We found that transcription of RON isoforms is regulated by promoter hypermethylation as the DNA demethylating agent 5-aza-2'-deoxycytidine decreased all RON transcripts in a subset of pancreatic cancer cell lines. The viability of sfRON-expressing HPDE cells was reduced by a RON specific small molecule inhibitor, while a therapeutic monoclonal antibody had no demonstrable effects. In summary, RON isoforms may comprise half of total RON transcript in human pancreatic cancer and their expression is regulated at least in part by promoter hypermethylation. RON isoforms activate distinct patterns of gene expression, have transforming activity and differential responses to RON directed therapies. These findings further our understanding of RON biology in pancreatic cancer and have implications for therapeutic strategies to target RON activity.


Assuntos
Carcinoma Ductal Pancreático/enzimologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Pancreáticas/enzimologia , Receptores Proteína Tirosina Quinases/biossíntese , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Metilação de DNA/genética , Xenoenxertos , Humanos , Isoenzimas/biossíntese , Isoenzimas/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Receptores Proteína Tirosina Quinases/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA