Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Arthroplasty ; 28(3): 510-6, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23142455

RESUMO

Initial stability with limited micromotion in uncemented total hip arthroplasty acetabular components is essential for bony attachment and long-term biomechanical fixation. This study compared porous titanium fixation surfaces to clinically established, plasma-sprayed designs in terms of interface stability and required seating force. Porous plasma-sprayed modular and metal-on-metal (MOM) cups were compared to a modular, porous titanium designs. Cups were implanted into polyurethane blocks with1-mm interference fit and subsequently edge loaded to failure. Porous titanium cups exhibited 23% to 65% improvement in initial stability when compared to plasma-sprayed cup designs (P=.01): a clinically significant increase, based on experience and prior literature. The results of this study indicate increased interface stability in porous titanium-coated cups without significantly increasing the necessary force and energy required for full seating.


Assuntos
Prótese de Quadril , Teste de Materiais , Desenho de Prótese , Acetábulo , Fenômenos Biomecânicos , Materiais Revestidos Biocompatíveis , Titânio
2.
J Arthroplasty ; 28(2): 359-67, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22854350

RESUMO

Acetabular cup orientation has been shown to influence dislocation, impingement, edge loading, contact stress, and polyethylene wear in total hip arthroplasty. Acetabular implant stiffness has been suggested as a factor in pelvic stress shielding and osseous integration. This study was designed to examine the combined effects of acetabular cup orientation and stiffness and on pelvic osseous loading. Four implant designs of varying stiffness were implanted into a composite hemipelvis in 35° or 50° of abduction. Specimens were dynamically loaded to simulate gait and pelvic strains were quantified with a grid of rosette strain gages and digital image correlation techniques. Changes in the joint reaction force orientation significantly altered mean acetabular bone strain values up to 67%. Increased cup abduction resulted in a 12% increase along the medial acetabular wall and an 18% decrease in strain in inferior lateral regions. Imbalanced loading distributions were observed with the stiffer components, resulting in higher, more variable, and localized surface strains. This study illustrates the effects of cup stiffness, gait, and implant orientation on loading distributions across the implanted pelvis.


Assuntos
Acetábulo/cirurgia , Artroplastia de Quadril , Articulação do Quadril/cirurgia , Prótese de Quadril , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA