Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Brain Sci ; 13(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36979277

RESUMO

Previous studies have found a benefit of closed-loop transcranial alternating current stimulation (CL-tACS) matched to ongoing slow-wave oscillations (SWO) during sleep on memory consolidation for words in a paired associates task (PAT). Here, we examined the effects of CL-tACS in a retroactive interference PAT (ri-PAT) paradigm, where additional stimuli were presented to increase interference and reduce memory performance. Thirty-one participants were tested on a PAT before sleep, and CL-tACS was applied over the right and left DLPFC (F3 and F4) vs. mastoids for five cycles after detection of the onset of each discrete event of SWO during sleep. Participants were awoken the following morning, learned a new PAT list, and then were tested on the original list. There was a significant effect of stimulation condition (p = 0.04297; Cohen's d = 0.768), where verum stimulation resulted in reduced retroactive interference compared with sham and a significant interaction of encoding strength and stimulation condition (p = 0.03591). Planned simple effects testing within levels of encoding revealed a significant effect of stimulation only for low-encoders (p = 0.0066; Cohen's d = 1.075) but not high-encoders. We demonstrate here for the first time that CL-tACS during sleep can enhance the protective benefits on retroactive interference in participants who have lower encoding aptitude.

2.
Front Syst Neurosci ; 16: 972235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313529

RESUMO

The standard theory of memory consolidation posits a dual-store memory system: a fast-learning fast-decaying hippocampus that transfers memories to slow-learning long-term cortical storage. Hippocampal lesions interrupt this transfer, so recent memories are more likely to be lost than more remote memories. Existing models of memory consolidation that simulate this temporally graded retrograde amnesia operate only on static patterns or unitary variables as memories and study only one-way interaction from the hippocampus to the cortex. However, the mechanisms underlying the consolidation of episodes, which are sequential in nature and comprise multiple events, are not well-understood. The representation of learning for sequential experiences in the cortical-hippocampal network as a self-consistent dynamical system is not sufficiently addressed in prior models. Further, there is evidence for a bi-directional interaction between the two memory systems during offline periods, whereby the reactivation of waking neural patterns originating in the cortex triggers time-compressed sequential replays in the hippocampus, which in turn drive the consolidation of the pertinent sequence in the cortex. We have developed a computational model of memory encoding, consolidation, and recall for storing temporal sequences that explores the dynamics of this bi-directional interaction and time-compressed replays in four simulation experiments, providing novel insights into whether hippocampal learning needs to be suppressed for stable memory consolidation and into how new and old memories compete for limited replay opportunities during offline periods. The salience of experienced events, based on factors such as recency and frequency of use, is shown to have considerable impact on memory consolidation because it biases the relative probability that a particular event will be cued in the cortex during offline periods. In the presence of hippocampal learning during sleep, our model predicts that the fast-forgetting hippocampus can continually refresh the memory traces of a given episodic sequence if there are no competing experiences to be replayed.

3.
Front Neurosci ; 13: 1416, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998067

RESUMO

Targeted memory reactivation (TMR) during slow-wave oscillations (SWOs) in sleep has been demonstrated with sensory cues to achieve about 5-12% improvement in post-nap memory performance on simple laboratory tasks. But prior work has not yet addressed the one-shot aspect of episodic memory acquisition, or dealt with the presence of interference from ambient environmental cues in real-world settings. Further, TMR with sensory cues may not be scalable to the multitude of experiences over one's lifetime. We designed a novel non-invasive non-sensory paradigm that tags one-shot experiences of minute-long naturalistic episodes in immersive virtual reality (VR) with unique spatiotemporal amplitude-modulated patterns (STAMPs) of transcranial electrical stimulation (tES). In particular, we demonstrated that these STAMPs can be re-applied as brief pulses during SWOs in sleep to achieve about 10-20% improvement in the metamemory of targeted episodes compared to the control episodes at 48 hours after initial viewing. We found that STAMPs can not only facilitate but also impair metamemory for the targeted episodes based on an interaction between pre-sleep metamemory and the number of STAMP applications during sleep. Overnight metamemory improvements were mediated by spectral power increases following the offset of STAMPs in the slow-spindle band (8-12 Hz) for left temporal areas in the scalp electroencephalography (EEG) during sleep. These results prescribe an optimal strategy to leverage STAMPs for boosting metamemory and suggest that real-world episodic memories can be modulated in a targeted manner even with coarser, non-invasive spatiotemporal stimulation.

4.
Mil Med ; 173(4): 339-48, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18472622

RESUMO

Involvement in combat imposes a psychological burden that affects all combatants, not only those who are vulnerable to emotional disorders or those who sustain physical wound distress. This burden of combat is also carried by the families of those who go to war. Although most ground combat units have a medical officer as well as a chaplain assigned to them, they do not have a mental health counselor or psychologist. Traditionally, the medical officer focuses on the treatment of physical symptoms, diseases, and physical injuries, whereas the chaplain treats spiritual and adjustment issues that may affect how well an individual service member functions personally and/or professionally. Located between these two points is a void, the treatment of psychological or emotional issues. By using the collaborative intervention model presented here, unit medical officers and chaplains can work together to treat these issues, thus reducing the number of service members needing referral to mental health agencies, decreasing the number of mental health-related medical separations, and increasing overall mission readiness. This article presents a model whereby medical officers and chaplains can enter this void together, treating these emotional issues collaboratively.


Assuntos
Comportamento Cooperativo , Transtornos Mentais/terapia , Saúde Mental , Militares , Psiquiatria Militar , Aconselhamento Diretivo , Saúde da Família , Necessidades e Demandas de Serviços de Saúde , Hospitalização , Humanos , Entrevista Psicológica , Transtornos Mentais/prevenção & controle , Modelos Psicológicos , Estados Unidos
5.
Front Hum Neurosci ; 12: 442, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30473660

RESUMO

We present a computational model of how memories can be contextually acquired and recalled in the hippocampus. Our adaptive contextual memory model comprises the lateral entorhinal cortex (LEC), the dentate gyrus (DG) and areas CA3 and CA1 in the hippocampus, and assumes external inputs about context that originate in the prefrontal cortex (PFC). Specifically, we propose that there is a top-down bias on the excitability of cells in the DG of the hippocampus that recruits a sub-population of cells to differentiate contexts, independent of experienced stimuli, expanding the "pattern separation" role typically attributed to the DG. It has been demonstrated in rats that if PFC is inactivated, both acquisition and recall of memory associations are impaired. However, PFC inactivation during acquisition of one set of memory associations surprisingly leads to subsequent facilitation of the acquisition of a conflicting set of memory associations in the same context under normal PFC operation. We provide here the first computational and algorithmic account of how the absence or presence of the top-down contextual biases on the excitability of DG cells during different learning phases of these experiments explains these data. Our model simulates PFC inactivation as the loss of inhibitory control on DG, which leads to full or partial activation of DG cells related to conflicting memory associations previously acquired in different contexts. This causes context-inappropriate memory traces to become active in the CA3 recurrent network and thereby the output CA1 area within the hippocampus. We show that these incongruous memory patterns proactively interfere with and slow the acquisition of new memory associations. Further, we demonstrate that pattern completion within CA3 in response to a partial cue for the recall of previously acquired memories is also impaired by PFC inactivation for the same reason. Pre-training the model with interfering memories in contexts different from those used in the experiments, simulating a lifetime of experiences, was crucial to reproduce the rat behavioral data. Finally, we made several testable predictions based on the model that suggest future experiments to deepen our understanding of brain-wide memory processes.

6.
Front Hum Neurosci ; 12: 221, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29910717

RESUMO

Mental state monitoring is a critical component of current and future human-machine interfaces, including semi-autonomous driving and flying, air traffic control, decision aids, training systems, and will soon be integrated into ubiquitous products like cell phones and laptops. Current mental state assessment approaches supply quantitative measures, but their only frame of reference is generic population-level ranges. What is needed are physiological biometrics that are validated in the context of task performance of individuals. Using curated intake experiments, we are able to generate personalized models of three key biometrics as useful indicators of mental state; namely, mental fatigue, stress, and attention. We demonstrate improvements to existing approaches through the introduction of new features. Furthermore, addressing the current limitations in assessing the efficacy of biometrics for individual subjects, we propose and employ a multi-level validation scheme for the biometric models by means of k-fold cross-validation for discrete classification and regression testing for continuous prediction. The paper not only provides a unified pipeline for extracting a comprehensive mental state evaluation from a parsimonious set of sensors (only EEG and ECG), but also demonstrates the use of validation techniques in the absence of empirical data. Furthermore, as an example of the application of these models to novel situations, we evaluate the significance of correlations of personalized biometrics to the dynamic fluctuations of accuracy and reaction time on an unrelated threat detection task using a permutation test. Our results provide a path toward integrating biometrics into augmented human-machine interfaces in a judicious way that can help to maximize task performance.

7.
Front Neurosci ; 12: 867, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30538617

RESUMO

Sleep is critically important to consolidate information learned throughout the day. Slow-wave sleep (SWS) serves to consolidate declarative memories, a process previously modulated with open-loop non-invasive electrical stimulation, though not always effectively. These failures to replicate could be explained by the fact that stimulation has only been performed in open-loop, as opposed to closed-loop where phase and frequency of the endogenous slow-wave oscillations (SWOs) are matched for optimal timing. The current study investigated the effects of closed-loop transcranial Alternating Current Stimulation (tACS) targeting SWOs during sleep on memory consolidation. 21 participants took part in a three-night, counterbalanced, randomized, single-blind, within-subjects study, investigating performance changes (correct rate and F1 score) on images in a target detection task over 24 h. During sleep, 1.5 mA closed-loop tACS was delivered in phase over electrodes at F3 and F4 and 180° out of phase over electrodes at bilateral mastoids at the frequency (range 0.5-1.2 Hz) and phase of ongoing SWOs for a duration of 5 cycles in each discrete event throughout the night. Data were analyzed in a repeated measures ANOVA framework, and results show that verum stimulation improved post-sleep performance specifically on generalized versions of images used in training at both morning and afternoon tests compared to sham, suggesting the facilitation of schematization of information, but not of rote, veridical recall. We also found a surprising inverted U-shaped dose effect of sleep tACS, which is interpreted in terms of tACS-induced faciliatory and subsequent refractory dynamics of SWO power in scalp EEG. This is the first study showing a selective modulation of long-term memory generalization using a novel closed-loop tACS approach, which holds great potential for both healthy and neuropsychiatric populations.

9.
Carbohydr Res ; 340(4): 665-72, 2005 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-15721338

RESUMO

The structure of the core oligosaccharide from a pneumonic Histophilus somni (Haemophilus somnus) strain 2336 was elucidated. The lipooligosaccharide (LOS) was subjected to a variety of degradative procedures. The structures of the purified products were established by monosaccharide and methylation analyses, NMR spectroscopy and mass spectrometry. The following structure for the core oligosaccharide was determined on the basis of the combined data from these experiments: [formula-see text]. The structural elucidation was intriguing as it suggested several differences in the LOS structures between strain 2336 and the related strain 738. Strain 738 originated following passaging of strain 2336 through a calf. The differences between the two structures are a different linkage between Gal II and GlcNAc (1-->4 here; 1-->3 in 738), the absence of phosphocholine (PCho) from 2336 and the presence of two phosphoethanolamine (PEtn) residues and Gal III (at the 2-position) of Hep II in 2336. Although pulse-field gel electrophoresis data following digest with only one restriction enzyme showed identical profiles suggesting that strains 738 and 2336 are the same strain, the structural data does suggest that, if strain 738 is indeed a phase variant of strain 2336, considerable variation occurred on calf passaging and could therefore be an intriguing example of how broadly this bacterium can adapt itself in the host.


Assuntos
Genes Bacterianos , Haemophilus somnus/química , Haemophilus somnus/genética , Oligossacarídeos/biossíntese , Oligossacarídeos/química , Animais , Configuração de Carboidratos , Bovinos , Eletroforese em Gel de Campo Pulsado , Variação Genética , Espectrometria de Massas , Metilação , Ressonância Magnética Nuclear Biomolecular , Oligossacarídeos/genética , Oligossacarídeos/isolamento & purificação
10.
Carbohydr Res ; 338(11): 1223-8, 2003 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-12747865

RESUMO

The structure of the lipooligosaccharide (LOS) from the commensal Haemophilus somnus strain 1P was elucidated. The structure of the O-deacylated LOS was established by monosaccharide analysis, NMR spectroscopy and mass spectrometry. The following structure for the O-deacylated LOS was determined on the basis of the combined data from these experiments. [chemical structure: see text] In the structure Kdo is 3-deoxy-D-manno-octulosonic acid, Hep is L-glycero-D-manno-heptose and lipid A-OH refers to O-deacylated Lipid A. The elucidation of this structure has increased our understanding of the relationship between the variability in LOS structure and the pathogenic potential of this organism. Specifically, the inability of this commensal strain to sialylate its LOS suggests that LOS sialylation could be a crucial virulence factor for H. somnus.


Assuntos
Haemophilus/química , Lipopolissacarídeos/análise , Lipopolissacarídeos/química , Lipopolissacarídeos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
11.
Carbohydr Res ; 339(3): 529-35, 2004 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-15013390

RESUMO

The structure for the carbohydrate moiety of the lipooligosaccharide (LOS) from the commensal Haemophilus somnus strain 129Pt was elucidated. The structure of the core oligosaccharide and O-deacylated LOS was established by monosaccharide and methylation analyses, NMR spectroscopy and mass spectrometry. The following structure for the major fully extended carbohydrate glycoform of the LOS was determined on the basis of the combined data from these experiments. [Carbohydrate structure: see text]. In the structure Kdo is 3-deoxy-D-manno-octulosonic acid, Hep is L-glycero-D-manno-heptose and PEtn is phosphoethanolamine. Minor amounts of glycoforms containing nonstoichiometric substituents glycine and phosphate at the distal heptose residue were also identified.


Assuntos
Haemophilus/química , Haemophilus/classificação , Lipopolissacarídeos/química , Sequência de Carboidratos , Lipopolissacarídeos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray
12.
Cogn Sci ; 38(6): 1229-48, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22141588

RESUMO

This paper reviews the fate of the central ideas behind the complementary learning systems (CLS) framework as originally articulated in McClelland, McNaughton, and O'Reilly (1995). This framework explains why the brain requires two differentially specialized learning and memory systems, and it nicely specifies their central properties (i.e., the hippocampus as a sparse, pattern-separated system for rapidly learning episodic memories, and the neocortex as a distributed, overlapping system for gradually integrating across episodes to extract latent semantic structure). We review the application of the CLS framework to a range of important topics, including the following: the basic neural processes of hippocampal memory encoding and recall, conjunctive encoding, human recognition memory, consolidation of initial hippocampal learning in cortex, dynamic modulation of encoding versus recall, and the synergistic interactions between hippocampus and neocortex. Overall, the CLS framework remains a vital theoretical force in the field, with the empirical data over the past 15 years generally confirming its key principles.


Assuntos
Hipocampo/fisiologia , Aprendizagem/fisiologia , Modelos Neurológicos , Neocórtex/fisiologia , Humanos , Memória Episódica , Vias Neurais/fisiologia , Reconhecimento Psicológico
13.
Vet Microbiol ; 161(1-2): 113-21, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22868182

RESUMO

The incorporation of N-acetyl-5-neuraminic acid (Neu5Ac), or sialic acid, onto surface components of some bacterial species may enhance their virulence. We have previously shown that Neu5Ac can be incorporated onto the lipooligosaccharide (LOS) of the bovine pathogen Histophilus somni, resulting in diminished antibody binding and enhanced serum resistance (Inzana et al., 2002. Infect. Immun. 70, 4870). In the present study, we assessed the effect of sialylation of H. somni LOS on the interaction with bovine innate host defenses. Incubation of non-sialylated H. somni with pre-colostral calf serum (PCS) resulted in dose-dependent, complement-mediated killing of the bacteria by the alternative pathway. However, sialylated H. somni was significantly more resistant to killing at any of the concentrations of PCS used. Sialylated H. somni LOS activated and consumed less complement than non-sialylated LOS, as determined by reduction in hemolysis of opsonized red blood cells, and by Western blotting of C(3) activation products. Sialylated H. somni bound more factor H and iC(3)b and less C(3) than non-sialylated bacteria, as determined by enzyme-linked immunosorbent assay, supporting the deficiencies observed in complement activation and consumption by sialylated LOS. Sialylation of H. somni LOS inhibited both polymorphonuclear leukocyte phagocytosis of (3)H-thymidine-labeled bacteria and intracellular killing of the bacteria, compared to non-sialylated bacteria. Furthermore, sialylated H. somni bound less non-specific antibodies in normal bovine sera than non-sialylated bacteria. Therefore, sialylation of H. somni LOS had profound effects on resistance of the bacteria to innate bovine host defenses, which should be taken into consideration during in vitro studies of H. somni.


Assuntos
Fator H do Complemento/metabolismo , Ácido N-Acetilneuramínico do Monofosfato de Citidina/química , Haemophilus somnus/metabolismo , Haemophilus somnus/patogenicidade , Lipopolissacarídeos/metabolismo , Neutrófilos/microbiologia , Soro/microbiologia , Animais , Anticorpos Antibacterianos/metabolismo , Bovinos , Ativação do Complemento , Ensaio de Imunoadsorção Enzimática , Ácido N-Acetilneuramínico/metabolismo , Neutrófilos/imunologia , Fagocitose/imunologia , Ligação Proteica , Soro/imunologia
14.
Vet Microbiol ; 153(1-2): 163-72, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-21482041

RESUMO

Histophilus somni is an etiologic agent of bovine respiratory and systemic diseases. Most pathogenic strains of H. somni that have been tested (36 of 42) are able to utilize N-acetyl-5-neuraminic acid (Neu5Ac) to sialylate their lipooligosaccharide (LOS). Homologs of all the genes required for transport, metabolism, and regulation of Neu5Ac in Haemophilus influenzae were identified in the sequenced genomes of H. somni. Three open reading frames (ORFs) in H. somni strain 2336 were identified that contained homology to genes required for LOS sialylation in related bacteria. ORF-1 (hssT-I), ORF-2 (hssT-II), and ORF-3 (neuA(Hs)) were predicted to encode for putative proteins with 37% amino acid homology to an α-(2-3)-sialyltransferase in H. influenzae, 43% amino acid homology to an Haemophilus ducreyi sialyltransferase, and 72% amino acid homology to an H. influenzae CMP-Neu5Ac synthetase, respectively. The specific enzyme activity of each ORF was determined using synthetic acceptor substrates. The HssT-I sialyltransferase primarily sialylated N-acetyllactosamine (LacNAc, Gal-ß-[1-4]-GlcNAc-R), which is expressed on strain 2336, whereas HssT-II preferentially sialylated lacto-N-biose (LNB, Gal-ß-[1-3]-GlcNAc-R), which is expressed on a phase variant of strain 2336: strain 738. Phase variation of the terminal galactose linkage in strain 738 from ß-(1-3)-(LNB) to ß-(1-4)-(LacNAc) was confirmed using monoclonal antibody reactivity and nuclear magnetic resonance spectroscopy. Sialylated LOS induced significantly less chemokine response from macrophages derived from Toll-like receptor (TLR)-4 knockout mice than from de-sialylated LOS. Furthermore, sialylated LOS induced significantly less NF-κB activity from mouse-derived bone marrow macrophages than de-sialylated LOS. Therefore, sialylation inhibited LOS signaling through TLR-4. In conclusion, H. somni utilizes linkage-specific sialyltransferases to sialylate its LOS to avoid innate host defense mechanisms despite simultaneous epitope phase variation.


Assuntos
Infecções por Haemophilus/imunologia , Haemophilus somnus/metabolismo , Evasão da Resposta Imune , Lipopolissacarídeos/metabolismo , Macrófagos/imunologia , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Haemophilus ducreyi/enzimologia , Haemophilus ducreyi/metabolismo , Haemophilus influenzae/enzimologia , Haemophilus influenzae/metabolismo , Haemophilus somnus/enzimologia , Haemophilus somnus/genética , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sialiltransferases/genética , Sialiltransferases/metabolismo
15.
Infect Immun ; 70(9): 4870-9, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12183531

RESUMO

Haemophilus somnus isolates from cases of thrombotic meningoencephalitis, pneumonia, and other disease sites are capable of undergoing a high rate of phase variation in the oligosaccharide component of their lipooligosaccharides (LOS). In contrast, the LOS of commensal strains isolated from the normal reproductive tract phase vary little or not at all. In addition, the LOS of H. somnus shares conserved epitopes with LOS from Neisseria gonorrhoeae, Haemophilus influenzae, and other species that can incorporate sialic acid into their LOS. We now report that growth of disease isolates of H. somnus with CMP-N-acetylneuraminic acid (CMP-NeuAc) or NeuAc added to the medium resulted in incorporation of NeuAc into the LOS. However, NeuAc was not incorporated into the LOS of commensal isolates and one disease isolate following growth in medium containing CMP-NeuAc or NeuAc. Sialylated LOS was detected by an increase in the molecular size or an increase in the amount of the largest-molecular-size LOS electrophoretic bands, which disappeared following treatment with neuraminidase. Sialylated LOS could also be detected by reactivity with Limax flavus agglutinin lectin, which is specific for sialylated species, by dot blot assay; this reactivity was also reversed by neuraminidase treatment. H. somnus strain 2336 LOS was found to contain some sialic acid when grown in medium lacking CMP-NeuAc or NeuAc, although supplementation enhanced NeuAc incorporation. In contrast strain 738, an LOS phase variant of strain 2336, was less extensively sialylated when the growth medium was supplemented with CMP-NeuAc or NeuAc, as determined by electrophoretic profiles and electrospray mass spectrometry. The sialyltransferase of H. somnus strain 738 was confirmed to preferentially sialylate the Gal(beta)-(1-3)-GlcNAc component of the lacto-N-tetraose structure by capillary electrophoresis assay. Enhanced sialylation of the strain 2336 LOS inhibited the binding of monoclonal antibodies to LOS by enzyme immunoassay and Western blotting. Furthermore, sialylation of the LOS enhanced the resistance of H. somnus to the bactericidal action of antiserum to LOS. Sialylation and increased resistance to killing by normal serum also occurred in a deletion mutant that was deficient in the terminal Gal-GlcNAc disaccharide. LOS sialylation may therefore be an important virulence mechanism to protect H. somnus against the host immune system.


Assuntos
Anticorpos Antibacterianos/metabolismo , Haemophilus/imunologia , Haemophilus/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Animais , Especificidade de Anticorpos , Atividade Bactericida do Sangue , Bovinos , Eletroforese em Gel de Poliacrilamida , Haemophilus/patogenicidade , Técnicas In Vitro , Lipopolissacarídeos/química , Sialiltransferases/metabolismo , Espectrometria de Massas por Ionização por Electrospray
16.
Microb Pathog ; 37(5): 263-71, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15519047

RESUMO

Virulent strains of the bovine opportunistic pathogen Haemophilus somnus (Histophilus somni) cause multi-systemic diseases in cattle. One of the reported virulence factors that H. somnus may use to persist in the host is resistance to intracellular killing. We report here that H. somnus significantly (P < 0.001) inhibited production of superoxide anion (O2-) by bovine mammary and alveolar macrophages as well as by polymorphonuclear leukocytes. Inhibition of O2- was time- and dose-dependent and did not occur after incubation with Escherichia coli, H. influenzae, or Brucella abortus. Non-viable H. somnus, purified lipooligosaccharide, or cell-free supernatant from mid-log phase cultures did not inhibit O2- production, indicating that O2- inhibition required contact with live H. somnus. Furthermore, preincubation of phagocytic cells with cytochalasin B to prevent phagocytosis did not decrease the ability of H. somnus to inhibit O2- production. Some H. somnus isolates from the prepuce of healthy bulls were less capable or incapable of inhibiting macrophage O2- production compared to isolates tested from disease sites. Our results suggest that inhibition of O2- may be an important virulence factor exploited by pathogenic strains of H. somnus to resist killing by professional phagocytic cells.


Assuntos
Bovinos/microbiologia , Haemophilus/fisiologia , Leucócitos Mononucleares/microbiologia , Leucócitos Mononucleares/fisiologia , Macrófagos Alveolares/metabolismo , Fagocitose/efeitos dos fármacos , Superóxidos/metabolismo , Animais , Bovinos/imunologia , Interações Hospedeiro-Parasita , Macrófagos Alveolares/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA