RESUMO
Amphibians are ideal for studying visual system evolution because their biphasic (aquatic and terrestrial) life history and ecological diversity expose them to a broad range of visual conditions. Here, we evaluate signatures of selection on visual opsin genes across Neotropical anurans and focus on three diurnal clades that are well-known for the concurrence of conspicuous colors and chemical defense (i.e., aposematism): poison frogs (Dendrobatidae), Harlequin toads (Bufonidae: Atelopus), and pumpkin toadlets (Brachycephalidae: Brachycephalus). We found evidence of positive selection on 44 amino acid sites in LWS, SWS1, SWS2, and RH1 opsin genes, of which one in LWS and two in RH1 have been previously identified as spectral tuning sites in other vertebrates. Given that anurans have mostly nocturnal habits, the patterns of selection revealed new sites that might be important in spectral tuning for frogs, potentially for adaptation to diurnal habits and for color-based intraspecific communication. Furthermore, we provide evidence that SWS2, normally expressed in rod cells in frogs and some salamanders, has likely been lost in the ancestor of Dendrobatidae, suggesting that under low-light levels, dendrobatids have inferior wavelength discrimination compared to other frogs. This loss might follow the origin of diurnal activity in dendrobatids and could have implications for their behavior. Our analyses show that assessments of opsin diversification in across taxa could expand our understanding of the role of sensory system evolution in ecological adaptation.
Assuntos
Opsinas , Venenos , Animais , Opsinas/genética , Filogenia , Opsinas de Bastonetes/genéticaRESUMO
The presence or absence of awns-whether wheat heads are 'bearded' or 'smooth' - is the most visible phenotype distinguishing wheat cultivars. Previous studies suggest that awns may improve yields in heat or water-stressed environments, but the exact contribution of awns to yield differences remains unclear. Here we leverage historical phenotypic, genotypic, and climate data for wheat (Triticum aestivum) to estimate the yield effects of awns under different environmental conditions over a 12-year period in the southeastern USA. Lines were classified as awned or awnless based on sequence data, and observed heading dates were used to associate grain fill periods of each line in each environment with climatic data and grain yield. In most environments, awn suppression was associated with higher yields, but awns were associated with better performance in heat-stressed environments more common at southern locations. Wheat breeders in environments where awns are only beneficial in some years may consider selection for awned lines to reduce year-to-year yield variability, and with an eye towards future climates.
Assuntos
Grão Comestível , Triticum , Triticum/genética , Fenótipo , Resposta ao Choque Térmico , Sudeste dos Estados UnidosAssuntos
Doença de Moyamoya , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Metotrexato/efeitos adversos , Aspirina , Doença de Moyamoya/complicações , Doença de Moyamoya/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológicoRESUMO
Predator-prey interactions often vary on the basis of the traits of the individual predators and prey involved. Here we examine whether the multidimensional behavioral diversity of predator groups shapes prey mortality rates and selection on prey behavior. We ran individual sea stars (Pisaster ochraceus) through three behavioral assays to characterize individuals' behavioral phenotype along three axes. We then created groups that varied in the volume of behavioral space that they occupied. We further manipulated the ability of predators to interact with one another physically via the addition of barriers. Prey snails (Chlorostome funebralis) were also run through an assay to evaluate their predator avoidance behavior before their use in mesocosm experiments. We then subjected pools of prey to predator groups and recorded the number of prey consumed and their behavioral phenotypes. We found that predator-predator interactions changed survival selection on prey traits: when predators were prevented from interacting, more fearful snails had higher survival rates, whereas prey fearfulness had no effect on survival when predators were free to interact. We also found that groups of predators that occupied a larger volume in behavioral trait space consumed 35% more prey snails than homogeneous predator groups. Finally, we found that behavioral hypervolumes were better predictors of prey survival rates than single behavioral traits or other multivariate statistics (i.e., principal component analysis). Taken together, predator-predator interactions and multidimensional behavioral diversity determine prey survival rates and selection on prey traits in this system.
Assuntos
Comportamento Predatório , Caramujos , Estrelas-do-Mar , Animais , Dinâmica Populacional , Taxa de SobrevidaRESUMO
The initial stages of a disease outbreak can determine the magnitude of the ensuing epidemic. Though rarely tested in unison, two factors with important consequences for the transmission dynamics of infectious agents are the collective traits of the susceptible population and the individual traits of the index case (i.e. 'patient zero'). Here, we test whether the personality composition of a social group can explain horizontal transmission dynamics of cuticular bacteria using the social spider Stegodyphus dumicola We exposed focal spiders of known behavioural phenotypes with a GFP-transformed cuticular bacterium (Pantoea sp.) and placed them in groups of 10 susceptible individuals (i.e. those with no experience with this bacterium). We measured bacterial transmission to groups composed of either all shy spiders, 10% bold spiders or 40% bold spiders. We found that colonies with 40% bold spiders experienced over twice the incidence of transmission compared to colonies with just 10% bold individuals after only 24 h of interaction. Colonies of all shy spiders experienced an intermediate degree of transmission. Interestingly, we did not detect an effect of the traits of the index case on transmission. These data suggest that the phenotypic composition of the susceptible population can have a greater influence on the degree of early transmission events than the traits of the index case.
Assuntos
Pantoea/fisiologia , Aranhas/fisiologia , Animais , Comportamento Animal , Feminino , Personalidade , Comportamento Social , Aranhas/microbiologiaRESUMO
With the rapid generation and preservation of both genomic and phenotypic information for many genotypes within crops and across locations, emerging breeding programs have a valuable opportunity to leverage these resources to 1) establish the most appropriate genetic foundation at program inception and 2) implement robust genomic prediction platforms that can effectively select future breeding lines. Integrating genomics-enabled breeding into cultivar development can save costs and allow resources to be reallocated towards advanced (i.e., later) stages of field evaluation, which can facilitate an increased number of testing locations and replicates within locations. In this context, a reestablished winter wheat breeding program was used as a case study to understand best practices to leverage and tailor existing genomic and phenotypic resources to determine optimal genetics for a specific target population of environments. First, historical multi-environment phenotype data, representing 1,285 advanced breeding lines, were compiled from multi-institutional testing as part of the SunGrains cooperative and used to produce GGE biplots and PCA for yield. Locations were clustered based on highly correlated line performance among the target population of environments into 22 subsets. For each of the subsets generated, EMMs and BLUPs were calculated using linear models with the 'lme4' R package. Second, for each subset, TPs representative of the new SC breeding lines were determined based on genetic relatedness using the 'STPGA' R package. Third, for each TP, phenotypic values and SNP data were incorporated into the 'rrBLUP' mixed models for generation of GEBVs of YLD, TW, HD and PH. Using a five-fold cross-validation strategy, an average accuracy of r = 0.42 was obtained for yield between all TPs. The validation performed with 58 SC elite breeding lines resulted in an accuracy of r = 0.62 when the TP included complete historical data. Lastly, QTL-by-environment interaction for 18 major effect genes across three geographic regions was examined. Lines harboring major QTL in the absence of disease could potentially underperform (e.g., Fhb1 R-gene), whereas it is advantageous to express a major QTL under biotic pressure (e.g., stripe rust R-gene). This study highlights the importance of genomics-enabled breeding and multi-institutional partnerships to accelerate cultivar development.
RESUMO
This preliminary report links the literatures on family asthma management practices and on the characteristics of family interaction patterns thought to influence children's adjustment to a chronic physical illness. Specifically, this study of 60 families with a child with asthma examined the extent to which perceived burden of routine asthma care affected child mental health via its influence on parent-child interaction patterns. Mothers completed a measure of asthma management routine burden, mother and child were observed in a 15-minute interaction task, and children completed measures of child anxiety and asthma quality of life (QOL). Perceived routine burden significantly predicted child anxiety and QOL through its effect on mother-child rejection/criticism. The same pattern did not hold for mother intrusiveness/control. The results are discussed in terms of how overall family climate and regulation of routines affects child well-being. Implications for clinical practice and limitations of the study are provided.