Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pain Med ; 22(8): 1776-1783, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-33718961

RESUMO

OBJECTIVE: The present study aimed to determine whether specific cognitive domains part of the Montreal Cognitive Assessment (MoCA) are significantly lower in community-dwelling older adults with chronic pain compared with older adults without pain and whether these domains would be associated with self-reported pain, disability, and somatosensory function. DESIGN: Secondary data analysis, cross-sectional. SETTING: University of Florida. SUBJECTS: Individuals over 60 years old enrolled in the Neuromodulatory Examination of Pain and mobility Across the Lifespan (NEPAL) study were included if they completed the MoCA and other study measures (n = 62). Most participants reported pain on most days during the past three months (63%). METHODS: Subjects underwent a health assessment (HAS) and a quantitative sensory testing (QST) session. Health/medical history, cognitive function and self-reported pain measures were administered during the HAS. Mechanical and thermal detection, and thermal pain thresholds were assessed during the QST session. RESULTS: Older adults with chronic pain had lower MoCA scores compared with controls on domains of executive function, attention, memory, and language (P < 0.05). The attention and language domains survived adjustments for age, sex, education, depression, and pain duration (P < 0.05). Attention was significantly associated with all pain characteristics including pain intensity and disability, while executive function was associated with mechanical detection (P < 0.05). CONCLUSION: Our results support previous findings that individuals with chronic pain tend to show poorer cognitive functioning compared with pain-free controls in domains of attention and executive function. Our findings also extend these findings to community-dwelling older adults, who are already most vulnerable to age-related cognitive declines.


Assuntos
Envelhecimento , Dor Crônica , Idoso , Dor Crônica/diagnóstico , Cognição , Estudos Transversais , Humanos , Testes de Estado Mental e Demência , Pessoa de Meia-Idade , Testes Neuropsicológicos
2.
Clin J Pain ; 38(7): 451-458, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35656805

RESUMO

OBJECTIVES: Pain sensitivity and the brain structure are critical in modulating pain and may contribute to the maintenance of pain in older adults. However, a paucity of evidence exists investigating the link between pain sensitivity and brain morphometry in older adults. The purpose of the study was to identify pain sensitivity profiles in healthy, community-dwelling older adults using a multimodal quantitative sensory testing protocol and to differentiate profiles based on brain morphometry. MATERIALS AND METHODS: This study was a secondary analysis of the Neuromodulatory Examination of Pain and Mobility Across the Lifespan (NEPAL) study. Participants completed demographic and psychological questionnaires, quantitative sensory testing, and a neuroimaging session. A Principal Component Analysis with Varimax rotation followed by hierarchical cluster analysis identified 4 pain sensitivity clusters (the "pain clusters"). RESULTS: Sixty-two older adults ranging from 60 to 94 years old without a specific pain condition (mean [SD] age=71.44 [6.69] y, 66.1% female) were analyzed. Four pain clusters were identified characterized by (1) thermal pain insensitivity; (2) high pinprick pain ratings and pressure pain insensitivity; (3) high thermal pain ratings and high temporal summation; and (4) thermal pain sensitivity, low thermal pain ratings, and low mechanical temporal summation. Sex differences were observed between pain clusters. Pain clusters 2 and 4 were distinguished by differences in the brain cortical volume in the parieto-occipital region. DISCUSSION: While sufficient evidence exists demonstrating pain sensitivity profiles in younger individuals and in those with chronic pain conditions, the finding that subgroups of experimental pain sensitivity also exist in healthy older adults is novel. Identifying these factors in older adults may help differentiate the underlying mechanisms contributing to pain and aging.


Assuntos
Dor Crônica , Vida Independente , Idoso , Doença Crônica , Dor Crônica/psicologia , Feminino , Humanos , Masculino , Medição da Dor/métodos , Limiar da Dor/psicologia , Fenótipo
3.
Chronic Stress (Thousand Oaks) ; 5: 24705470211030273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34286166

RESUMO

BACKGROUND: Autonomic dysregulation may lead to blunted sympathetic reactivity in chronic pain states. Autonomic responses are controlled by the central autonomic network (CAN). Little research has examined sympathetic reactivity and associations with brain CAN structures in the presence of chronic pain; thus, the present study aims to investigate how chronic pain influences sympathetic reactivity and associations with CAN brain region volumes. METHODS: Sympathetic reactivity was measured as change in skin conductance level (ΔSCL) between a resting reference period and walking periods for typical and complex walking tasks (obstacle and dual-task). Participants included 31 people with (n = 19) and without (n = 12) chronic musculoskeletal pain. Structural 3 T MRI was used to determine gray matter volume associations with ΔSCL in regions of the CAN (i.e., brainstem, amygdala, insula, and anterior cingulate cortex). RESULTS: ΔSCL varied across walking tasks (main effect p = 0.036), with lower ΔSCL in chronic pain participants compared to controls across trials 2 and 3 under the obstacle walking condition. ΔSCL during typical walking was associated with multiple CAN gray matter volumes, including brainstem, bilateral insula, amygdala, and right caudal anterior cingulate cortex (p's < 0.05). The difference in ΔSCL from typical-to-obstacle walking were associated with volumes of the midbrain segment of the brainstem and anterior segment of the circular sulcus of the insula (p's < 0.05), with no other significant associations. The difference in ΔSCL from typical-to-dual task walking was associated with the bilateral caudal anterior cingulate cortex, and left rostral cingulate cortex (p's < 0.05). CONCLUSIONS: Sympathetic reactivity is blunted during typical and complex walking tasks in persons with chronic pain. Additionally, blunted sympathetic reactivity is associated with CAN brain structure, with direction of association dependent on brain region. These results support the idea that chronic pain may negatively impact typical autonomic responses needed for walking performance via its potential impact on the brain.

4.
Pain Rep ; 6(4): e978, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901680

RESUMO

INTRODUCTION: An individual's chronic pain history is associated with brain morphometric alterations; but little is known about the association between pain history and brain function. OBJECTIVES: This cross-sectional study aimed at determining how worst musculoskeletal pain intensity (WPINT) moderated the association between worst musculoskeletal pain duration (WPDUR) and brain resting-state magnetic resonance imaging functional connectivity (RSFC) in community-dwelling older adults (60-94 years, 75% females, 97% right-handed). METHODS: Resting-state magnetic resonance imaging functional connectivity between region of interests was linearly regressed on WPDUR and WPINT. Predictions were compared with a control group's average RSFC (61-85 years, 47% females, 95% right-handed). RESULTS: Three significant patterns emerged: (1) the positive association between WPDUR and RSFC between the medial prefrontal cortex, in the anterior salience network (SN), and bilateral lateral Brodmann area 6, in the visuospatial network (VSN), in participants with more severe chronic pain, resulting in abnormally lower RSFC for shorter WPDUR; (2) the negative association between WPDUR and RSFC between right VSN occipitotemporal cortex (lateral BA37 and visual V5) and bilateral VSN lateral Brodmann area 6, independently of WPINT, resulting in abnormally higher and lower RSFC for shorter and longer WPDUR, respectively; and (3) the positive association between WPDUR and the left hemisphere's salience network-default mode network connectivity (between the hippocampus and both dorsal insula and ventral or opercular BA44), independently of WPINT, resulting in abnormally higher RSFC for longer WPDUR. CONCLUSION: Musculoskeletal effects on brain functional networks of general healthy individuals could accumulate until being observable at older ages. Results invite to examinations of these effects' impact on function and memory.

5.
J Pain Res ; 13: 2389-2400, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061554

RESUMO

INTRODUCTION: Musculoskeletal pain is prevalent in older adults representing the leading cause of disability in this population. Similarly, nearly half of older adults complain of difficulty sleeping. We aimed to explore the relationship between sleep quality with self-reported musculoskeletal pain, somatosensory and pain thresholds in community-dwelling older adults and further explore brain regions that may contribute to this association. METHODS: Older adults (>60 years old, n=69) from the NEPAL study completed demographic, pain and sleep assessments followed by a quantitative sensory testing battery. A subset (n=49) also underwent a 3T high-resolution, T1-weighted anatomical scan. RESULTS: Poorer sleep quality using the Pittsburgh Sleep Quality Index was positively associated with self-reported pain measures (all p's >0.05), but not somatosensory and pain thresholds (all p's >0.05). Using a non-parametric threshold-free cluster enhancement (TFCE) approach, worse sleep quality was significantly associated with lower cortical thickness in the precentral, postcentral, precuneus, superior parietal, and lateral occipital regions (TFCE-FWE-corrected at p < 0.05). Further, only postcentral cortical thickness significantly mediated the association between sleep quality and self-reported pain intensity using bootstrapped mediation methods. CONCLUSION: Our findings in older adults are similar to previous studies in younger individuals where sleep is significantly associated with self-reported pain. Specifically, our study implicates brain structure as a significant mediator of this association in aging. Future larger studies are needed to replicate our findings and to further understand if the brain can be a therapeutic target for both improved sleep and pain relief in older individuals.

6.
Exp Gerontol ; 126: 110708, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31445107

RESUMO

Musculoskeletal pain is a cause of disability in older individuals and is commonly associated with executive function deficits. In particular, verbal fluency deficits have been previously reported in older individuals with and without musculoskeletal pain, however, no studies have examined non-verbal fluency. The present study investigated non-verbal fluency performance in younger and older individuals and associations with clinical and experimental pain. The NEPAL study included older (n = 63) and younger (n = 28) individuals who completed demographic, and clinical pain assessments followed by a multi-modal QST battery. A subset of participants (older n = 39/63, younger n = 11/28) underwent a structural 3T MRI to extract cortical thickness and subcortical gray matter volumes. The Ruff Figural Fluency Test was administered to assess fluid/divergent thinking, ability to shift cognitive set, and planning strategies. Total Unique Designs drawn and Error Ratio assessed participants' ability to minimize repetition while maximizing unique productions. Adjusting for race and education, older participants with chronic pain had significantly lower Total Unique Designs (67.1 ±â€¯20.3) compared to older adults without chronic pain (78.8 ±â€¯15.9) and younger controls (93.8 ±â€¯20.3, p < 0.001). Within the older sample, those with chronic pain had a significantly greater Error Ratio (0.22 ±â€¯0.3) compared to those without chronic pain (0.09 ±â€¯0.06) and younger controls (0.05 ±â€¯0.05, p = 0.002). In older participants, greater Total Unique Design scores were significantly associated only with lower pressure pain sensitivity (r = 0.300, p = 0.031) while greater Error Ratio scores were significantly associated with greater thermal pain sensitivity (r = 0.304, p = 0.027). However, after accounting for sleep quality, clinical and experimental pain associations were eliminated. Across all participants, non-verbal fluency performance was associated with cortical thickness in frontal, parietal and temporal regions as well as several subcortical gray matter structures even after adjusting for multiple comparisons (p's < 0.001). Our findings suggest a pain-related deficit in non-verbal fluency beyond the established age-related decrements that may be dependent on sleep quality and was associated with specific patterns of gray matter structure.


Assuntos
Envelhecimento/psicologia , Córtex Cerebral/patologia , Dor Crônica/psicologia , Função Executiva/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Córtex Cerebral/diagnóstico por imagem , Dor Crônica/diagnóstico por imagem , Dor Crônica/patologia , Cognição/fisiologia , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Medição da Dor/métodos , Limiar da Dor/fisiologia , Autorrelato , Limiar Sensorial/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA