Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
J Cell Mol Med ; 26(15): 4125-4136, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35818295

RESUMO

The MC4R, a GPCR, has long been a major target for obesity treatment. As the most well-studied melanocortin receptor subtype, the evolutionary knowledge pushes the drug development and structure-activity relationship (SAR) moving forward. The past decades have witnessed the evolution of scientists' view on GPCRs gradually from the control of a single canonical signalling pathway via a bilateral 'active-inactive' model to a multi-state alternative model where the ligands' binding affects the selection of the downstream signalling. This evolution brings the concept of biased signalling and the beginning of the next generation of peptide drug development, with the aim of turning from receptor subtype specificity to signalling pathway selectivity. The determination of the value structures of the MC4R revealed insights into the working mechanism of MC4R activation upon binding of agonists. However, new challenge has risen as we seek to unravel the mystery of MC4R signalling selection. Thus, more biased agonists and ligands with representative biological functions are needed to solve the rest of the puzzle.


Assuntos
Receptor Tipo 4 de Melanocortina , Transdução de Sinais , Ligantes , Peptídeos , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Receptores de Melanocortina
2.
Bioconjug Chem ; 32(3): 497-501, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33576604

RESUMO

A new fluorescent biarsenical peptide labeling probe was synthesized and labeled with the radioactive isotopes 11C and 18F. The utility of this probe was demonstrated by installing each of these isotopes into a melanocortin 1 receptor (MC1R) binding peptide, which targets melanoma tumors. Its applicability was further showcased by subsequent in vitro imaging in cells as well as in vivo imaging in melanoma xenograft mice by fluorescence and positron emission tomography.


Assuntos
Arsenicais/química , Corantes Fluorescentes/química , Melanoma Experimental/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Animais , Linhagem Celular Tumoral , Xenoenxertos , Melanoma Experimental/metabolismo , Camundongos , Peptídeos/metabolismo , Receptor Tipo 1 de Melanocortina/metabolismo
3.
Bioorg Med Chem ; 51: 116509, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798381

RESUMO

A new series of enkephalin-like tetrapeptide analogs modified at the C-terminus by an N-(3,4-dichlorophenyl)-N-(piperidin-4-yl)propionamide (DPP) moiety were designed, synthesized, and tested for their binding affinities at opioid receptors and monoamine transporters to evaluate their potential multifunctional activity for the treatment of chronic pain. Most ligands exhibited high binding affinities in the nanomolar range at the opioid receptors with a slight delta-opioid receptor (DOR) selectivity over mu-opioid receptor (MOR) and kappa-opioid receptor (KOR) and low binding affinities in the micromolar range at the monoamine transporters, SERT and NET. Ligands of which the positions 1 and 4 were substituted by Dmt and Phe(4-X) residues, respectively, showed the excellent binding affinities at three opioid receptors. Among them, Dmt-d-Tic-Gly-Phe(4-F)-DPP was the most promising considering its excellent opioid affinities, particularly unexpected high binding affinity (Ki = 0.13 nM) at the KOR, and moderate interactions with serotonin/norepinephrine reuptake inhibitors (SNRIs). Docking studies revealed that the ligand was a good fit for the KOR binding pocket (binding score = 8,750).


Assuntos
Amidas/farmacologia , Oligopeptídeos/farmacologia , Receptores Opioides kappa/antagonistas & inibidores , Receptores Opioides mu/antagonistas & inibidores , Amidas/química , Relação Dose-Resposta a Droga , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo , Relação Estrutura-Atividade
4.
Molecules ; 26(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34684847

RESUMO

Brain G-protein coupled receptors have been hypothesized to be potential targets for maintaining or restoring cognitive function in normal aged individuals or in patients with neurodegenerative disease. A number of recent reports suggest that activation of melanocortin receptors (MCRs) in the brain can significantly improve cognitive functions of normal rodents and of different rodent models of the Alzheimer's disease. However, the potential impact of normative aging on the expression of MCRs and their potential roles for modulating cognitive function remains to be elucidated. In the present study, we first investigated the expression of these receptors in six different brain regions of young (6 months) and aged (23 months) rats following assessment of their cognitive status. Correlation analysis was further performed to reveal potential contributions of MCR subtypes to spatial learning and memory. Our results revealed statistically significant correlations between the expression of several MCR subtypes in the frontal cortex/hypothalamus and the hippocampus regions and the rats' performance in spatial learning and memory only in the aged rats. These findings support the hypothesis that aging has a direct impact on the expression and function of MCRs, establishing MCRs as potential drug targets to alleviate aging-induced decline of cognitive function.


Assuntos
Envelhecimento/metabolismo , Cognição/fisiologia , Lobo Frontal/metabolismo , Hipotálamo/metabolismo , Receptores de Melanocortina/metabolismo , Animais , Aprendizagem/fisiologia , Masculino , Memória/fisiologia , Doenças Neurodegenerativas/metabolismo , Ratos , Ratos Endogâmicos F344
5.
Molecules ; 24(19)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569697

RESUMO

Cancer vaccine is a promising immunotherapeutic approach to train the immune system with vaccines to recognize and eliminate tumors. Adjuvants are compounds that are necessary in cancer vaccines to mimic an infection process and amplify immune responses. The Toll-like receptor 2 and 6 (TLR2/TLR6) agonist dipalmitoyl-S-glyceryl cysteine (Pam2Cys) was demonstrated as an ideal candidate for synthetic vaccine adjuvants. However, the synthesis of Pam2Cys requires expensive N-protected cysteine as a key reactant, which greatly limits its application as a synthetic vaccine adjuvant in large-scaled studies. Here, we report the development of N-acetylated Pam2Cys analogs as TLR2/TLR6 agonists. Instead of N-protected cysteine, the synthesis utilizes N-acetylcysteine to bring down the synthetic costs. The N-acetylated Pam2Cys analogs were demonstrated to activate TLR2/TLR6 in vitro. Moreover, molecular docking studies were performed to provide insights into the molecular mechanism of how N-acetylated Pam2Cys analogs bind to TLR2/TLR6. Together, these results suggest N-acetylated Pam2Cys analogs as inexpensive and promising synthetic vaccine adjuvants to accelerate the development of cancer vaccines in the future.


Assuntos
Lipopeptídeos/química , Lipopeptídeos/farmacologia , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/química , Receptor 6 Toll-Like/agonistas , Receptor 6 Toll-Like/química , Humanos , Lipopeptídeos/síntese química , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular
6.
Circulation ; 136(1): 83-97, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28450348

RESUMO

BACKGROUND: The melanocortin 1 receptor (MC1-R) is expressed by monocytes and macrophages, where it exerts anti-inflammatory actions on stimulation with its natural ligand α-melanocyte-stimulating hormone. The present study was designed to investigate the specific role of MC1-R in the context of atherosclerosis and possible regulatory pathways of MC1-R beyond anti-inflammation. METHODS: Human and mouse atherosclerotic samples and primary mouse macrophages were used to study the regulatory functions of MC1-R. The impact of pharmacological MC1-R activation on atherosclerosis was assessed in apolipoprotein E-deficient mice. RESULTS: Characterization of human and mouse atherosclerotic plaques revealed that MC1-R expression localizes in lesional macrophages and is significantly associated with the ATP-binding cassette transporters ABCA1 and ABCG1, which are responsible for initiating reverse cholesterol transport. Using bone marrow-derived macrophages, we observed that α-melanocyte-stimulating hormone and selective MC1-R agonists similarly promoted cholesterol efflux, which is a counterregulatory mechanism against foam cell formation. Mechanistically, MC1-R activation upregulated the levels of ABCA1 and ABCG1. These effects were accompanied by a reduction in cell surface CD36 expression and in cholesterol uptake, further protecting macrophages from excessive lipid accumulation. Conversely, macrophages deficient in functional MC1-R displayed a phenotype with impaired efflux and enhanced uptake of cholesterol. Pharmacological targeting of MC1-R in atherosclerotic apolipoprotein E-deficient mice reduced plasma cholesterol levels and aortic CD36 expression and increased plaque ABCG1 expression and signs of plaque stability. CONCLUSIONS: Our findings identify a novel role for MC1-R in macrophage cholesterol transport. Activation of MC1-R confers protection against macrophage foam cell formation through a dual mechanism: It prevents cholesterol uptake while concomitantly promoting ABCA1- and ABCG1-mediated reverse cholesterol transport.


Assuntos
Colesterol/metabolismo , Macrófagos/metabolismo , Receptor Tipo 1 de Melanocortina/metabolismo , Transdução de Sinais/fisiologia , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Feminino , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Células HEK293 , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória , Receptor Tipo 1 de Melanocortina/agonistas , Transdução de Sinais/efeitos dos fármacos , alfa-MSH/metabolismo , alfa-MSH/farmacologia
7.
J Neurochem ; 144(2): 201-217, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29164616

RESUMO

High levels (µM) of beta amyloid (Aß) oligomers are known to trigger neurotoxic effects, leading to synaptic impairment, behavioral deficits, and apoptotic cell death. The hydrophobic C-terminal domain of Aß, together with sequences critical for oligomer formation, is essential for this neurotoxicity. However, Aß at low levels (pM-nM) has been shown to function as a positive neuromodulator and this activity resides in the hydrophilic N-terminal domain of Aß. An N-terminal Aß fragment (1-15/16), found in cerebrospinal fluid, was also shown to be a highly active neuromodulator and to reverse Aß-induced impairments of long-term potentiation. Here, we show the impact of this N-terminal Aß fragment and a shorter hexapeptide core sequence in the Aß fragment (Aßcore: 10-15) to protect or reverse Aß-induced neuronal toxicity, fear memory deficits and apoptotic death. The neuroprotective effects of the N-terminal Aß fragment and Aßcore on Aß-induced changes in mitochondrial function, oxidative stress, and apoptotic neuronal death were demonstrated via mitochondrial membrane potential, live reactive oxygen species, DNA fragmentation and cell survival assays using a model neuroblastoma cell line (differentiated NG108-15) and mouse hippocampal neuron cultures. The protective action of the N-terminal Aß fragment and Aßcore against spatial memory processing deficits in amyloid precursor protein/PSEN1 (5XFAD) mice was demonstrated in contextual fear conditioning. Stabilized derivatives of the N-terminal Aßcore were also shown to be fully protective against Aß-triggered oxidative stress. Together, these findings indicate an endogenous neuroprotective role for the N-terminal Aß fragment, while active stabilized N-terminal Aßcore derivatives offer the potential for therapeutic application.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/toxicidade , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/farmacologia , Peptídeos beta-Amiloides/química , Animais , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Condicionamento Operante/efeitos dos fármacos , Medo , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Oligopeptídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/química , Espécies Reativas de Oxigênio/metabolismo
8.
Biochemistry ; 56(32): 4201-4209, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28715181

RESUMO

Systematic N-methylated derivatives of the melanocortin receptor ligand, SHU9119, lead to multiple binding and functional selectivity toward melanocortin receptors. However, the relationship between N-methylation-induced conformational changes in the peptide backbone and side chains and melanocortin receptor selectivity is still unknown. We conducted comprehensive conformational studies in solution of two selective antagonists of the third isoform of the melanocortin receptor (hMC3R), namely, Ac-Nle-c[Asp-NMe-His6-d-Nal(2')7-NMe-Arg8-Trp9-Lys]-NH2 (15) and Ac-Nle-c[Asp-His6-d-Nal(2')7-NMe-Arg8-NMe-Trp9-NMe-Lys]-NH2 (17). It is known that the pharmacophore (His6-DNal7-Arg8-Trp9) of the SHU-9119 peptides occupies a ß II-turn-like region with the turn centered about DNal7-Arg8. The analogues with hMC3R selectivity showed distinct differences in the spatial arrangement of the Trp9 side chains. In addition to our NMR studies, we also carried out molecular-level interaction studies of these two peptides at the homology model of hMC3R. Earlier chimeric human melanocortin 3 receptor studies revealed insights regarding the binding and functional sites of hMC3R selectivity. Upon docking of peptides 15 and 17 to the binding pocket of hMC3R, it was revealed that Arg8 and Trp9 side chains are involved in a majority of the interactions with the receptor. While Arg8 forms polar contacts with D154 and D158 of hMC3R, Trp9 utilizes π-π stacking interactions with F295 and F298, located on the transmembrane domain of hMC3R. It is hypothesized that as the frequency of Trp9-hMC3R interactions decrease, antagonistic activity increases. The absence of any interactions of the N-methyl groups with hMC3R suggests that their primary function is to modulate backbone conformations of the ligands.


Assuntos
Hormônios Estimuladores de Melanócitos/química , Simulação de Acoplamento Molecular , Receptor Tipo 3 de Melanocortina/antagonistas & inibidores , Receptor Tipo 3 de Melanocortina/química , Sítios de Ligação , Humanos , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 3 de Melanocortina/metabolismo , Relação Estrutura-Atividade
9.
J Heterocycl Chem ; 54(2): 1228-1235, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28819330

RESUMO

Several studies have suggested functional association between µ-opioid and δ-opioid receptors and showed that µ-activity could be modulated by δ-ligands. The general conclusion is that agonists for the δ-receptor can enhance the analgesic potency and efficacy of µ-agonists. Our preliminary investigations demonstrate that new bivalent ligands constructed from the µ-agonist fentanyl and the δ-agonist enkephalin-like peptides are promising entities for creation of new analgesics with reduced side effects for treatment of neuropathic pain. A new superposition of the mentioned pharmacophores led to novel µ-bivalent/δ-bivalent compounds that demonstrate both µ-opioid and δ-opioid receptor agonist activity and high efficacy in anti-inflammatory and neuropathic pain models with the potential of reduced unwanted side effects.

10.
Annu Rev Pharmacol Toxicol ; 53: 557-80, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23294313

RESUMO

Peptide hormones and neurotransmitters are of central importance in most aspects of intercellular communication and are involved in virtually all degenerative diseases. In this review, we discuss physicochemical approaches to the design of novel peptide and peptidomimetic agonists, antagonists, inverse agonists, and related compounds that have unique biological activity profiles, reduced toxic side effects, and, if desired, the ability to cross the blood-brain barrier. Designing ligands for specific biological and medical needs is emphasized, as is the close collaboration of chemists and biologists to maximize the chances for success. Special emphasis is placed on the use of conformational (ϕ-ψ space) and topographical (χ space) considerations in design.


Assuntos
Peptídeos/farmacologia , Peptidomiméticos/farmacologia , Animais , Barreira Hematoencefálica/metabolismo , Desenho de Fármacos , Humanos , Ligantes , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacocinética , Peptidomiméticos/química , Peptidomiméticos/metabolismo , Peptidomiméticos/farmacocinética
11.
Biopolymers ; 106(6): 884-888, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27486849

RESUMO

Design of biologically active peptides is of critical importance for the development of potent, selective, nontoxic bioavailable drugs. A major approach that has been developed to accomplish this is the development of methods for the design and synthesis of a wide variety of cyclic peptides and peptidomimetics. In this short and general review, we outline the methods that have been developed for cyclization of peptides and how these have been used for peptide and peptidomimetic design using the melanotropin peptides and melanocortin receptors MC1R, MC3R, MC4R, and MC5R to illustrate aspects of this approach.


Assuntos
Peptídeos Cíclicos , Peptidomiméticos , Receptores de Melanocortina/agonistas , Animais , Humanos , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptidomiméticos/síntese química , Peptidomiméticos/química , Peptidomiméticos/farmacologia
12.
Biopolymers ; 106(6): 876-883, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27561155

RESUMO

This article describes the development of cyclic peptides for G-protein coupled receptors to enable structure-function knowledge and the design of novel therapeutics. One important property of cyclic peptides is that they tend to be resistant to the digestion, enabling them to survive in the human digestive tract. This trait makes them very important as drug leads or as scaffolds which, in theory, can be engineered to incorporate a peptide domain of medicinal value. This is especially important for delivery of peptides that would be destroyed without such implementation. The melanocortin system is the focus of this article, and includes melanotropin ligands and melanocortin receptors. We examine two strategies to constrain the melanotropin peptide backbone. The first is based on global constraint of peptides by cyclization using various kinds of linkers. In the second approach we describe the use of a natural cyclized template, the cyclotide, to graft the melanotropin phamacophore, -His-Phe-Arg-Trp-, to obtain selective drug leads. In these examples the conserved melanocyte stimulating hormone pharmacophore is examined and the modified peptides were synthesized by solid phase methodology. Biological studies confirmed the production of selective, potent and in some cases orally available ligands.


Assuntos
Ciclotídeos/química , Ciclotídeos/síntese química , Hormônios Estimuladores de Melanócitos/química , Hormônios Estimuladores de Melanócitos/síntese química , Animais , Humanos
13.
Mol Pharm ; 13(2): 534-44, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26713599

RESUMO

Fluorescence molecular imaging can be employed for the development of novel cancer targeting agents. Herein, we investigated the pharmacokinetics (PK) and cellular uptake of Dmt-Tic-Cy5, a delta-opioid receptor (δOR) antagonist-fluorescent dye conjugate, as a tumor-targeting molecular imaging agent. δOR expression is observed normally in the CNS, and pathologically in some tumors, including lung liver and breast cancers. In vitro, in vivo, and ex vivo experiments were conducted to image and quantify the fluorescence signal associated with Dmt-Tic-Cy5 over time using in vitro and intravital fluorescence microscopy and small animal fluorescence imaging of tumor-bearing mice. We observed specific retention of Dmt-Tic-Cy5 in tumors with maximum uptake in δOR-expressing positive tumors at 3 h and observable persistence for >96 h; clearance from δOR nonexpressing negative tumors by 6 h; and systemic clearance from normal organs by 24 h. Live-cell and intravital fluorescence microscopy demonstrated that Dmt-Tic-Cy5 had sustained cell-surface binding lasting at least 24 h with gradual internalization over the initial 6 h following administration. Dmt-Tic-Cy5 is a δOR-targeted agent that exhibits long-lasting and specific signal in δOR-expressing tumors, is rapidly cleared from systemic circulation, and is not retained in non-δOR-expressing tissues. Hence, Dmt-Tic-Cy5 has potential as a fluorescent tumor imaging agent.


Assuntos
Carbocianinas/farmacocinética , Neoplasias do Colo/tratamento farmacológico , Dipeptídeos/farmacocinética , Corantes Fluorescentes/química , Receptores Opioides delta/química , Tetra-Hidroisoquinolinas/farmacocinética , Animais , Apoptose , Carbocianinas/administração & dosagem , Proliferação de Células , Neoplasias do Colo/enzimologia , Neoplasias do Colo/patologia , Dipeptídeos/administração & dosagem , Feminino , Humanos , Técnicas Imunoenzimáticas , Cinética , Camundongos , Camundongos Nus , Antagonistas de Entorpecentes/administração & dosagem , Antagonistas de Entorpecentes/farmacocinética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectroscopia de Luz Próxima ao Infravermelho , Tetra-Hidroisoquinolinas/administração & dosagem , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Bioorg Med Chem Lett ; 26(1): 222-7, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26611918

RESUMO

N-Phenyl-N-(piperidin-2-ylmethyl)propionamide based bivalent ligands are unexplored for the design of opioid based ligands. Two series of hybrid molecules bearing N-phenyl-N-(piperidin-2-ylmethyl)propionamide derived small molecules conjugated with an enkephalin analogues with and without a linker (ß-alanine) were designed and synthesized. Both bivalent ligand series exhibited remarkable binding affinities from nanomolar to subnanomolar range at both µ and δ opioid receptors and displayed potent agonist activities as well. The replacement of Tyr with Dmt and introduction of a linker between the small molecule and enkephalin analogue resulted in highly potent ligands. Both series of ligands showed excellent binding affinities at both µ (0.6-0.9nM) and δ (0.2-1.2nM) opioid receptors respectively. Similarly, these bivalent ligands exhibited potent agonist activities in both MVD and GPI assays. Ligand 17 was evaluated for in vivo antinociceptive activity in non-injured rats following spinal administration. Ligand 17 was not significantly effective in alleviating acute pain. The most likely explanations for this low intrinsic efficacy in vivo despite high in vitro binding affinity, moderate in vitro activity are (i) low potency suggesting that higher doses are needed; (ii) differences in experimental design (i.e. non-neuronal, high receptor density for in vitro preparations versus CNS site of action in vitro); (iii) pharmacodynamics (i.e. engaging signalling pathways); (iv) pharmacokinetics (i.e. metabolic stability). In summary, our data suggest that further optimisation of this compound 17 is required to enhance intrinsic antinociceptive efficacy.


Assuntos
Amidas/síntese química , Amidas/farmacologia , Analgésicos/síntese química , Analgésicos/farmacologia , Encefalinas/química , Encefalinas/farmacologia , Dor/tratamento farmacológico , Piperidinas/síntese química , Piperidinas/farmacologia , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Amidas/química , Analgésicos/química , Animais , Relação Dose-Resposta a Droga , Encefalinas/síntese química , Cobaias , Humanos , Íleo/efeitos dos fármacos , Ligantes , Camundongos , Estrutura Molecular , Piperidinas/química , Ratos , Relação Estrutura-Atividade
15.
Bioorg Med Chem Lett ; 26(22): 5513-5516, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27756562

RESUMO

Nerve injury and inflammation cause up-regulation of an endogenous opioid ligand, dynorphin A (Dyn A), in the spinal cord resulting in hyperalgesia via the interaction with bradykinin receptors (BRs). This is a non-opioid neuroexcitatory effect that cannot be blocked by opioid antagonists. Our systematic structure-activity relationships study on Dyn A identified lead ligands 1 and 4, along with the key structural feature (i.e. amphipathicity) for the BRs. However, the ligands showed very low metabolic stability in plasma (t1/2 <1h) and therefore, in order to improve their metabolic stabilities with retained biological activities, various modifications were performed. Cyclization of ligand 4 afforded a cyclic Dyn A analogue 5 that retained the same range of binding affinity as the linear ligand with improved metabolic stability (t1/2 >5h) and therefore possesses the potential as a pharmacophoric scaffold to be utilized for drug development.


Assuntos
Analgésicos não Narcóticos/química , Analgésicos não Narcóticos/farmacologia , Antagonistas dos Receptores da Bradicinina/química , Antagonistas dos Receptores da Bradicinina/farmacologia , Dinorfinas/química , Dinorfinas/farmacologia , Receptores da Bradicinina/metabolismo , Sequência de Aminoácidos , Animais , Ciclização , Ligantes , Ratos , Relação Estrutura-Atividade
16.
Bioorg Med Chem ; 24(2): 85-91, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26712115

RESUMO

Here, we report the design, synthesis and structure activity relationship of novel small molecule opioid ligands based on 5-amino substituted (tetrahydronaphthalen-2-yl)methyl moiety with N-phenyl-N-(piperidin-2-yl)propionamide derivatives. We synthesized various molecules including amino, amide and hydroxy substitution on the 5th position of the (tetrahydronaphthalen-2-yl)methyl moiety. In our further designs we replaced the (tetrahydronaphthalen-2-yl)methyl moiety with benzyl and phenethyl moiety. These N-phenyl-N-(piperidin-2-yl)propionamide analogues showed moderate to good binding affinities (850-4 nM) and were selective towards the µ opioid receptor over the δ opioid receptors. From the structure activity relationship studies, we found that a hydroxyl substitution at the 5th position of (tetrahydronapthalen-2yl)methyl group, ligands 19 and 20, showed excellent binding affinities 4 and 5 nM, respectively, and 1000 fold selectivity towards the µ opioid relative to the delta opioid receptor. The ligand 19 showed potent agonist activities 75±21 nM, and 190±42 nM in the GPI and MVD assays. Surprisingly the fluoro analogue 20 showed good agonist activities in MVD assays 170±42 nM, in contrast to its binding affinity results.


Assuntos
Amidas/química , Amidas/farmacologia , Analgésicos Opioides/química , Analgésicos Opioides/farmacologia , Desenho de Fármacos , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Amidas/síntese química , Analgésicos Opioides/síntese química , Relação Dose-Resposta a Droga , Humanos , Ligantes , Estrutura Molecular , Relação Estrutura-Atividade
17.
Bioorg Med Chem Lett ; 25(19): 4148-52, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26316468

RESUMO

We report here the design and synthesis of novel multifunctional ligands that act as (µ/δ) opioid agonists and bradykinin 2 receptor antagonists. These multifunctional ligands were designed to interact with the multiple receptors to show an enhanced analgesic effect, with no opioid-induced tolerance. We designed our multifunctional ligands based on the well-known second generation bradykinin 2 receptor antagonist Hoe 140 (DArg-Arg-Pro-Hyp-Gly-Thi-Ser-DTic-Oic-Arg-OH) and the opioid enkephalin analogues Tyr-DAla-Phe, Tyr-DAla-Gly-Phe and Tyr-Pro-Phe. We explored the conjugation of opioid pharmacophore to the Hoe 140 (DArg-Arg-Pro-Hyp-Gly-Thi-Ser-DTic-Oic-Arg-OH) in various positions with and without a linker. These bifunctional ligands showed very good binding affinity towards the both µ and δ opioid receptors. Among these bifunctional ligands 8, 11 and 12 showed excellent and balanced binding affinity at both µ and δ opioid receptors (0.5 nM, 2.0 nM; 0.3 nM, 2 nM; 2 nM and 3 nM), respectively. On the other hand these bifunctional ligands showed very weak and no binding affinity for rat brain bradykinin 2 receptors. Similarly, the Hoe 140 showed very low affinity (>10,000 nM and 9,000 nM) against [(3)H] BK binding in rat brain membranes and in HEK293 cells, respectively. In contrast, the Hoe 140 showed very good binding affinity in guinea pig ileum (0.43 nM) similar to that of previously reported. The bradykinin 2 receptors are known to be present in rat brain membrane, guinea pig ileum (GPI) and rabbit jugular vein. Previously the binding affinity of Hoe 140 for bradykinin 2 receptor was reported using guinea pig ileum. The above results suggest that the bradykinin 2 receptors present in rat brain membrane are a different sub type than the bradykinin 2 receptor present in guinea pig ileum (GPI).


Assuntos
Antagonistas de Receptor B2 da Bradicinina/farmacologia , Desenho de Fármacos , Oligopeptídeos/síntese química , Oligopeptídeos/farmacologia , Receptor B2 da Bradicinina/metabolismo , Receptores Opioides/agonistas , Animais , Antagonistas de Receptor B2 da Bradicinina/síntese química , Antagonistas de Receptor B2 da Bradicinina/química , Encéfalo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Cobaias , Células HEK293 , Humanos , Ligantes , Estrutura Molecular , Oligopeptídeos/química , Coelhos , Ratos , Relação Estrutura-Atividade
18.
Bioorg Med Chem Lett ; 25(1): 30-3, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25434001

RESUMO

It has been shown that under chronic pain or nerve injury conditions, up-regulated dynorphin A (Dyn A) interacts with bradykinin receptors (BRs) to cause hyperalgesia in the spinal cord. Thus BRs antagonist can modulate hyperalgesia by blocking Dyn A's interaction with the BRs in the central nervous system. In our earlier structure-activity relationship (SAR) study, [des-Arg(7)]-Dyn A-(4-11) 13 was discovered as a minimum pharmacophore for rat brain BRs with its antagonist activity (anti-hyperalgesic effect) in in vivo tests using naïve or injured animals. We have pursued further modification on the [des-Arg(7)]-Dyn A analogues and identified a key insight into the pharmacophore of the rat brain BRs: amphipathicity.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dinorfinas/química , Dinorfinas/metabolismo , Receptores da Bradicinina/metabolismo , Animais , Dinorfinas/farmacologia , Ratos , Relação Estrutura-Atividade
19.
Bioorg Med Chem Lett ; 25(20): 4683-8, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26323872

RESUMO

We describe the design and synthesis of novel bivalent ligands based on the conjugation of 4-anilidopiperidine derivatives with enkephalin analogues. The design of non-peptide analogues is explored with 5-amino substituted (tetrahydronaphthalen-2yl) methyl containing 4-anilidopiperidine derivatives, while non-peptide-peptide ligands are explored by conjugating the C-terminus of enkephalin analogues (H-Xxx-DAla-Gly-Phe-OH) to the amino group of 4-anilidopiperidine small molecule derivatives with and without a linker. These novel bivalent ligands are evaluated for biological activities at µ and δ opioid receptors. They exhibit very good affinities at µ and δ opioid receptors, and potent agonist activities in MVD and GPI assays. Among these the lead bivalent ligand 17 showed excellent binding affinities (0.1 nM and 0.5 nM) at µ and δ opioid receptors respectively, and was found to have very potent agonist activities in MVD (56 ± 5.9 nM) and GPI (4.6 ± 1.9 nM) assays. In vivo the lead bivalent ligand 17 exhibited a short duration of action (<15 min) comparable to 4-anilidopiperidine derivatives, and moderate analgesic activity. The ligand 17 has limited application against acute pain but may have utility in settings where a highly reversible analgesic is required.


Assuntos
Analgésicos/farmacologia , Desenho de Fármacos , Encefalinas/farmacologia , Contração Muscular/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Piperidinas/farmacologia , Receptores Opioides/agonistas , Analgésicos/administração & dosagem , Analgésicos/química , Animais , Relação Dose-Resposta a Droga , Encefalinas/administração & dosagem , Encefalinas/química , Cobaias , Ligantes , Camundongos , Conformação Molecular , Medição da Dor/efeitos dos fármacos , Piperidinas/administração & dosagem , Piperidinas/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
20.
Bioorg Med Chem Lett ; 25(17): 3716-20, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26212775

RESUMO

Several bifunctional peptides were synthesized and characterized based on the pentapeptide-derived ligand NP30 (1: Tyr-DAla-Gly-Phe-Gly-Trp-O-[3',5'-Bzl(CF3)2]). Modification and truncation of amino acid residues were performed, and the tripeptide-derived ligand NP66 (11: Dmt-DAla-Trp-NH-[3',5'-(CF3)2-Bzl]) was obtained based on the overlapping pharmacophore concept. The Trp(3) residue of ligand 11 works as a message residue for both opioid and NK1 activities. The significance lies in the observation that the approach of appropriate truncation of peptide sequence could lead to a tripeptide-derived chimeric ligand with effective binding and functional activities for both mu and delta opioid and NK1 receptors with agonist activities at mu and delta opioid and antagonist activity at NK1 receptors, respectively.


Assuntos
Antagonistas dos Receptores de Neurocinina-1/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Animais , Técnicas de Química Sintética , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos/métodos , Guanosina 5'-O-(3-Tiotrifosfato) , Humanos , Concentração Inibidora 50 , Ligantes , Antagonistas dos Receptores de Neurocinina-1/química , Peptídeos/metabolismo , Ratos , Relação Estrutura-Atividade , Triptofano/química , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA