RESUMO
Owing to their distinctive photophysical properties resulting from their larger exciton binding energy and the influence of dielectric and quantum confinement effects, considerable research interest has been directed toward two-dimensional Ruddlesden-Popper halide perovskites (2D RP-HPs). Particularly, 2D RP-HPs exhibit exceptional multiphoton absorption (MPA) effects that reveal versatile applications. In this work, two-photon absorption (2PA) and three-photon absorption (3PA) in 2D RP-HPs, specifically (PEA)2PbBr4 and (BA)2PbBr4 platelets, have been demonstrated through their photoluminescence spectra under multiphoton excitation, revealing a power law relationship with excitation energy. On the other hand, polarization-dependent MPA measurements are also conducted to obtain their anisotropy properties. The excellent 2PA and 3PA effects of 2D RP-HPs have found applications in ultrafast optics to construct fringe-resolved autocorrelation traces, enabling the retrieval of pulse duration not only passively mode-locked Ti:sapphire at 800 nm but also Yb-doped fiber lasers at 1030 nm.
RESUMO
PURPOSE: This study aimed to evaluate the clinical usefulness of a deep learning-based computer-aided detection (CADe) system for breast ultrasound. METHODS: The set of 88 training images was expanded to 14,000 positive images and 50,000 negative images. The CADe system was trained to detect lesions in real- time using deep learning with an improved model of YOLOv3-tiny. Eighteen readers evaluated 52 test image sets with and without CADe. Jackknife alternative free-response receiver operating characteristic analysis was used to estimate the effectiveness of this system in improving lesion detection. RESULT: The area under the curve (AUC) for image sets was 0.7726 with CADe and 0.6304 without CADe, with a 0.1422 difference, indicating that with CADe was significantly higher than that without CADe (p < 0.0001). The sensitivity per case was higher with CADe (95.4%) than without CADe (83.7%). The specificity of suspected breast cancer cases with CADe (86.6%) was higher than that without CADe (65.7%). The number of false positives per case (FPC) was lower with CADe (0.22) than without CADe (0.43). CONCLUSION: The use of a deep learning-based CADe system for breast ultrasound by readers significantly improved their reading ability. This system is expected to contribute to highly accurate breast cancer screening and diagnosis.
Assuntos
Neoplasias da Mama , Aprendizado Profundo , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Curva ROC , ComputadoresRESUMO
PURPOSE: The purpose of this study was to compare the diagnostic performance and the interpretation time of breast ultrasound examination between reading without and with the artificial intelligence (AI) system as a concurrent reading aid. MATERIAL AND METHODS: A fully crossed multi-reader and multi-case (MRMC) reader study was conducted. Sixteen participating physicians were recruited and retrospectively interpreted 172 breast ultrasound cases in two reading scenarios, once without and once with the AI system (BU-CAD™, TaiHao Medical Inc.) assistance for concurrent reading. Interpretations of any given case set with and without the AI system were separated by at least 5 weeks. These reading results were compared to the reference standard and the area under the LROC curve (AUCLROC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for performance evaluations. The interpretation time was also compared between the unaided and aided scenarios. RESULTS: With the help of the AI system, the readers had higher diagnostic performance with an increase in the average AUCLROC from 0.7582 to 0.8294 with statistically significant. The sensitivity, specificity, PPV, and NPV were also improved from 95.77%, 24.07%, 44.18%, and 93.50%-98.17%, 30.67%, 46.91%, and 96.10%, respectively. Of these, the improvement in specificity reached statistical significance. The average interpretation time was significantly reduced by approximately 40% when the readers were assisted by the AI system. CONCLUSION: The concurrent-read AI system improves the diagnostic performance in detecting and diagnosing breast lesions on breast ultrasound images. In addition, the interpretation time is effectively reduced for the interpreting physicians.
Assuntos
Neoplasias da Mama , Médicos , Inteligência Artificial , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Mamografia/métodos , Leitura , Estudos Retrospectivos , Sensibilidade e EspecificidadeRESUMO
The characteristics and application of nonlinear absorption from CsPbBr3 QDs film with the ligand-modified strategy have been investigated in this work. By means of a near-infrared fs Ti:sapphire laser as a light source, the up-conversion emission of CsPbBr3 QDs film of around 518 nm revealed a quadratic increase with the pump intensity. Through the temperature-dependent up-conversion emission, we obtained the binding energy and longitudinal optical (LO) phonon energy of CsPbBr3 QDs film of around 58.1 and 61.2 meV, respectively. Due to more active thermal coupling between the excited electron or hot phonon effect, the photon decay trace under two-photon excitation was prolonged at higher temperatures. The ligand-modified CsPbBr3 QDs film exhibits a relatively large TPA coefficient of around 28.6 cm/GW by the open aperture Z-scan measurement, and it has been demonstrated as a promising nonlinear medium to obtain the pulsewidth of ultrafast lasers.
RESUMO
The integration of graphene with complex-oxide heterostructures such as LaAlO3/SrTiO3 offers the opportunity to combine the multifunctional properties of an oxide interface with the exceptional electronic properties of graphene. The ability to control interface conduction through graphene and understanding how it affects the intrinsic properties of an oxide interface are critical to the technological development of multifunctional devices. Here we demonstrate several device archetypes in which electron transport at an oxide interface is modulated using a patterned graphene top-gate. Nanoscale devices are fabricated at the oxide interface by conductive atomic force microscope (c-AFM) lithography, and transport measurements are performed as a function of the graphene gate voltage. Experiments are performed with devices written adjacent to or directly underneath the graphene gate. Distinct capabilities of this approach include the ability to create highly flexible device configurations, the ability to modulate carrier density at the oxide interface, and the ability to control electron transport up to the single-electron tunneling regime, while maintaining intrinsic transport properties of the oxide interface. Our results facilitate the design of a variety of nanoscale devices that combine excellent transport properties of these two proximal two-dimensional electron systems.
RESUMO
High mobility graphene field-effect devices, fabricated on the complex-oxide heterostructure LaAlO3 /SrTiO3 , exhibit quantum interference signatures up to room temperature. The oxide material is believed to play a critical role in suppressing short-range and phonon contributions to scattering. The ability to maintain pseudospin coherence at room temperature holds promise for the realization of new classical and quantum information technologies.
RESUMO
Levitated diamond nanocrystals with nitrogen-vacancy (NV) centres in high vacuum have been proposed as a unique system for experiments in fundamental quantum mechanics, including the generation of large quantum superposition states and tests of quantum gravity. This system promises extreme isolation from its environment while providing quantum control and sensing through the NV centre spin. While optical trapping has been the most explored method of levitation, recent results indicate that excessive optical heating of the nanodiamonds under vacuum may make the method impractical with currently available materials. Here, we study an alternative magneto-gravitational trap for diamagnetic particles, such as diamond nanocrystals, with stable levitation from atmospheric pressure to high vacuum. Magnetic field gradients from permanent magnets confine the particle in two dimensions, while confinement in the third dimension is gravitational. We demonstrate that feedback cooling of the centre-of-mass motion of a trapped nanodiamond cluster results in cooling of one degree of freedom to less than 1 K.