Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Bioorg Chem ; 98: 103689, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32171993

RESUMO

In an effort to develop new cancer therapeutics, we have reported clinical candidate BPR1K871 (1) as a potentanticancercompound in MOLM-13 and MV4-11 leukemia models, as well as in colorectal and pancreatic animal models. As BPR1K871 lacks oral bioavailability, we continued searching for orally bioavailable analogs through drug-like property optimization. We optimized both the physicochemical properties (PCP) as well as in vitro rat liver microsomal stability of 1, with concomitant monitoring of aurora kinase enzyme inhibition as well as cellular anti-proliferative activity in HCT-116 cell line. Structural modification at the 6- and 7-position of quinazoline core of 1 led to the identification of 34 as an orally bioavailable (F% = 54) multi-kinase inhibitor, which exhibits potent anti-proliferative activity against various cancer cell lines. Quinazoline 34 is selected as a promising oral lead candidate for further preclinical evaluation.


Assuntos
Antineoplásicos/farmacologia , Aurora Quinases/antagonistas & inibidores , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Aurora Quinases/metabolismo , Disponibilidade Biológica , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Masculino , Estrutura Molecular , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Quinazolinas/administração & dosagem , Quinazolinas/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
2.
J Biomed Sci ; 25(1): 6, 2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29361943

RESUMO

BACKGROUND: Heme oxygenase (HO) catalyzes NADPH-dependent degradation of heme to liberate iron, carbon monoxide and biliverdin. The interaction between HO and cytochrome P450 reductase (CPR), an electron donor, is essential for HO activity. HO-1 is a stress-inducible isoform whereas HO-2 is constitutively expressed. HO-1 induction is commonly seen in cancers and impacts disease progression, supporting the possibility of targeting HO-1 for cancer therapy. METHODS: We employed a cell-based bioluminescence resonance energy transfer assay to screen compounds with ability to inhibit HO-1/CPR interaction. The effect of the identified compound on HO-1/CPR interaction was confirmed by pull down assay. Moreover, the anti-tumorigenic activity of the identified compound on HO-1-enhanced tumor growth and migration was assessed by trypan blue exclusion method and wound healing assay. RESULTS: Danthron was identified as an effective small molecule able to interfere with the interaction between HO-1 and CPR but not HO-2 and CPR. Additional experiments with structural analogues of danthron revealed that the positions of hydroxyl moieties significantly affected the potency of inhibition on HO-1/CPR interaction. Pull-down assay confirmed that danthron inhibited the interaction of CPR with HO-1 but not HO-2. Danthron suppressed growth and migration of HeLa cells with stable HO-1 overexpression but not mock cells. In contrast, anthrarufin, a structural analog with no ability to interfere HO-1/CPR interaction, exhibited no significant effect on HO-1-overexpressing HeLa cells. CONCLUSIONS: These findings demonstrate that danthron is an isoform-specific inhibitor for HO-1/CPR interaction and may serve as a lead compound for novel anticancer drug.


Assuntos
Antraquinonas/farmacologia , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Heme Oxigenase-1/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Células HEK293 , Células HeLa , Humanos , Isoenzimas/metabolismo
3.
J Biol Chem ; 291(37): 19299-311, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27458013

RESUMO

Innate immune responses are important for pathogen elimination and adaptive immune response activation. However, excess inflammation may contribute to immunopathology and disease progression (e.g. inflammation-associated hepatocellular carcinoma). Immune modulation resulting from pattern recognition receptor-induced responses is a potential strategy for controlling immunopathology and related diseases. This study demonstrates that the mycotoxin patulin suppresses Toll-like receptor- and RIG-I/MAVS-dependent cytokine production through GSH depletion, mitochondrial dysfunction, the activation of p62-associated mitophagy, and p62-TRAF6 interaction. Blockade of autophagy restored the immunosuppressive activity of patulin, and pharmacological activation of p62-dependent mitophagy directly reduced RIG-I-like receptor-dependent inflammatory cytokine production. These results demonstrated that p62-dependent mitophagy has an immunosuppressive role to innate immune response and might serve as a potential immunomodulatory target for inflammation-associated diseases.


Assuntos
Imunidade Inata/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Micotoxinas/farmacologia , Patulina/farmacologia , Proteína Sequestossoma-1/imunologia , Animais , Células HEK293 , Humanos , Camundongos , Mitofagia/imunologia , Células RAW 264.7
4.
Proc Natl Acad Sci U S A ; 110(19): E1779-87, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23610398

RESUMO

The overexpression of Aurora kinases in multiple tumors makes these kinases appealing targets for the development of anticancer therapies. This study identified two small molecules with a furanopyrimidine core, IBPR001 and IBPR002, that target Aurora kinases and induce a DFG conformation change at the ATP site of Aurora A. Our results demonstrate the high potency of the IBPR compounds in reducing tumorigenesis in a colorectal cancer xenograft model in athymic nude mice. Human hepatoma up-regulated protein (HURP) is a substrate of Aurora kinase A, which plays a crucial role in the stabilization of kinetochore fibers. This study used the IBPR compounds as well as MLN8237, a proven Aurora A inhibitor, as chemical probes to investigate the molecular role of HURP in mitotic spindle formation. These compounds effectively eliminated HURP phosphorylation, thereby revealing the coexistence and continuous cycling of HURP between unphosphorylated and phosphorylated forms that are associated, respectively, with microtubules emanating from centrosomes and kinetochores. Furthermore, these compounds demonstrate a spatial hierarchical preference for HURP in the attachment of microtubules extending from the mother to the daughter centrosome. The finding of inequality in the centrosomal microtubules revealed by these small molecules provides a versatile tool for the discovery of new cell-division molecules for the development of antitumor drugs.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrossomo/ultraestrutura , Inibidores Enzimáticos/farmacologia , Cinetocoros/ultraestrutura , Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Aurora Quinase A , Aurora Quinases , Carcinoma Hepatocelular/metabolismo , Ciclo Celular , Cristalografia por Raios X , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Nus , Mitose , Transplante de Neoplasias , Fosforilação , Estrutura Terciária de Proteína
5.
J Virol ; 88(9): 4962-75, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24554665

RESUMO

UNLABELLED: Epstein-Barr virus (EBV) lytic replication involves complex processes, including DNA synthesis, DNA cleavage and packaging, and virion egress. These processes require many different lytic gene products, but the mechanisms of their actions remain unclear, especially for DNA cleavage and packaging. According to sequence homology analysis, EBV BALF3, encoded by the third leftward open reading frame of the BamHI-A fragment in the viral genome, is a homologue of herpes simplex virus type 1 UL28. This gene product is believed to possess the properties of a terminase, such as nucleolytic activity on newly synthesized viral DNA and translocation of unit length viral genomes into procapsids. In order to characterize EBV BALF3, the protein was produced by and purified from recombinant baculoviruses and examined in an enzymatic reaction in vitro, which determined that EBV BALF3 acts as an endonuclease and its activity is modulated by Mg(2+), Mn(2+), and ATP. Moreover, in EBV-positive epithelial cells, BALF3 was expressed and transported from the cytoplasm into the nucleus following induction of the lytic cycle, and gene silencing of BALF3 caused a reduction of DNA packaging and virion release. Interestingly, suppression of BALF3 expression also decreased the efficiency of DNA synthesis. On the basis of these results, we suggest that EBV BALF3 is involved simultaneously in DNA synthesis and packaging and is required for the production of mature virions. IMPORTANCE: Virus lytic replication is essential to produce infectious virions, which is responsible for virus survival and spread. This work shows that an uncharacterized gene product of the human herpesvirus Epstein-Barr virus (EBV), BALF3, is expressed during the lytic cycle. In addition, BALF3 mediates an endonucleolytic reaction and is involved in viral DNA synthesis and packaging, leading to influence on the production of mature virions. According to sequence homology and physical properties, the lytic gene product BALF3 is considered a terminase in EBV. These findings identify a novel viral gene with an important role in contributing to a better understanding of the EBV life cycle.


Assuntos
Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Herpesvirus Humano 4/enzimologia , Herpesvirus Humano 4/fisiologia , Proteínas Virais/metabolismo , Montagem de Vírus , Replicação Viral , Cátions Bivalentes/metabolismo , Ativadores de Enzimas/metabolismo , Magnésio/metabolismo , Manganês/metabolismo
6.
Cell Microbiol ; 16(11): 1603-18, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24898729

RESUMO

The non-structural protein 4B (NS4B) of the hepatitis C virus (HCV) is an endoplasmic reticulum (ER) membrane protein comprising two consecutive amphipathic α-helical domains (AH1 and AH2). Its self-oligomerization via the AH2 domain is required for the formation of the membranous web that is necessary for viral replication. Previously, we reported that the host-encoded ER-associated reticulon 3 (RTN3) protein is involved in the formation of the replication-associated membranes of (+)RNA enteroviruses during viral replication. In this study, we demonstrated that the second transmembrane region of RTN3 competed for, and bound to, the AH2 domain of NS4B, thus abolishing NS4B self-interaction and leading to the downregulation of viral replication. This interaction was mediated by two crucial residues, lysine 52 and tyrosine 63, of AH2, and was regulated by the AH1 domain. The silencing of RTN3 in Huh7 and AVA5 cells harbouring an HCV replicon enhanced the replication of HCV, which was counteracted by the overexpression of recombinant RTN3. The synthesis of viral RNA was also increased in siRNA-transfected human primary hepatocytes infected with HCV derived from cell culture. Our results demonstrated that RTN3 acted as a restriction factor to limit the replication of HCV.


Assuntos
Proteínas de Transporte/metabolismo , Hepacivirus/imunologia , Hepacivirus/fisiologia , Interações Hospedeiro-Patógeno , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Multimerização Proteica , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Células Cultivadas , Hepatócitos/virologia , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas
7.
J Comput Aided Mol Des ; 29(1): 89-100, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25344840

RESUMO

Furanopyrimidine 1 (IC50 = 273 nM, LE = 0.36, LELP = 10.28) was recently identified by high-throughput screening (HTS) of an in-house library (125,000 compounds) as an Aurora kinase inhibitor. Structure-based hit optimization resulted in lead molecules with in vivo efficacy in a mouse tumour xenograft model, but no oral bioavailability. This is attributed to "molecular obesity", a common problem during hit to lead evolution during which degradation of important molecular properties such as molecular weight (MW) and lipophilicity occurs. This could be effectively tackled by the right choice of hit compounds for optimization. In this regard, ligand efficiency (LE) and ligand efficiency dependent lipophilicity (LELP) indices are more often used to choose fragment-like hits for optimization. To identify hits with appropriate LE, we used a MW cut-off <250, and pyrazole structure to filter HTS library. Next, structure-based virtual screening using software (Libdock and Glide) in the Aurora A crystal structure (PDB ID: 3E5A) was carried out, and the top scoring 18 compounds tested for Aurora A enzyme inhibition. This resulted in the identification of a novel tetrahydro-pyrazolo-isoquinoline hit 7 (IC50 = 852 nM, LE = 0.44, LELP = 8.36) with fragment-like properties suitable for further hit optimization. Moreover, hit 7 was found to be selective for Aurora A (Aurora B IC50 = 35,150 nM) and the possible reasons for selectivity investigated by docking two tautomeric forms (2H- and 3H-pyrazole) of 7 in Auroras A and B (PDB ID: 4AF3) crystal structures. This docking study shows that the major 3H-pyrazole tautomer of 7 binds in Aurora A stronger than in Aurora B.


Assuntos
Aurora Quinase A/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Aurora Quinase A/química , Humanos , Concentração Inibidora 50 , Ligantes , Simulação de Acoplamento Molecular , Peso Molecular , Pirazóis/química
8.
Bioorg Med Chem ; 21(11): 2856-67, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23618709

RESUMO

Preclinical investigations and early clinical trials suggest that FLT3 inhibitors are a viable therapy for acute myeloid leukemia. However, early clinical data have been underwhelming due to incomplete inhibition of FLT3. We have developed 3-phenyl-1H-5-pyrazolylamine as an efficient template for kinase inhibitors. Structure-activity relationships led to the discovery of sulfonamide, carbamate and urea series of FLT3 inhibitors. Previous studies showed that the sulfonamide 4 and carbamate 5 series were potent and selective FLT3 inhibitors with good in vivo efficacy. Herein, we describe the urea series, which we found to be potent inhibitors of FLT3 and VEGFR2. Some inhibited growth of FLT3-mutated MOLM-13 cells more strongly than the FLT3 inhibitors sorafenib (2) and ABT-869 (3). In preliminary in vivo toxicity studies of the four most active compounds, 10f was found to be the least toxic. A further in vivo efficacy study demonstrated that 10f achieved complete tumor regression in a higher proportion of MOLM-13 xenograft mice than 4 and 5 (70% vs 10% and 40%). These results show that compound 10f possesses improved pharmacologic and selectivity profiles and could be more effective than previously disclosed FLT3 inhibitors in the treatment of acute myeloid leukemia.


Assuntos
Antineoplásicos/síntese química , Benzamidas/síntese química , Benzamidas/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases/síntese química , Ureia/análogos & derivados , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzamidas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Humanos , Concentração Inibidora 50 , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/patologia , Camundongos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Sensibilidade e Especificidade , Relação Estrutura-Atividade , Ureia/síntese química , Ureia/química , Ureia/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/química
9.
Antimicrob Agents Chemother ; 56(2): 647-57, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21930871

RESUMO

The aim of this study was to identify the antiviral mechanism of a novel compound, BPR3P0128. From a large-scale screening of a library of small compounds, BPR3P compounds were found to be potent inhibitors of influenza viral replication in Madin-Darby canine kidney (MDCK) cells. BPR3P0128 exhibited inhibitory activity against both influenza A and B viruses. The 50% inhibitory concentrations were in the range of 51 to 190 nM in MDCK cells, as measured by inhibition-of-cytopathic-effect assays. BPR3P0128 appeared to target the viral replication cycle but had no effect on viral adsorption. The inhibition of cap-dependent mRNA transcription by BPR3P0128 was more prominent with a concurrent increase in cap-independent cRNA replication in a primer extension assay, suggesting a role of BPR3P0128 in switching transcription to replication. This reduction in mRNA expression resulted from the BPR3P-mediated inhibition of the cap-dependent endoribonuclease (cap-snatching) activities of nuclear extracts containing the influenza virus polymerase complex. No inhibition of binding of 5' viral RNA to the viral polymerase complex by this compound was detected. BPR3P0128 also effectively inhibited other RNA viruses, such as enterovirus 71 and human rhinovirus, but not DNA viruses, suggesting that BPR3P0128 targets a cellular factor(s) associated with viral PB2 cap-snatching activity. The identification of this factor(s) could help redefine the regulation of viral transcription and replication and thereby provide a potential target for antiviral chemotherapeutics.


Assuntos
Antivirais/farmacologia , Endonucleases/antagonistas & inibidores , Orthomyxoviridae/efeitos dos fármacos , Pirazóis/farmacologia , Capuzes de RNA/efeitos dos fármacos , Animais , Antivirais/síntese química , Antivirais/química , Linhagem Celular , Efeito Citopatogênico Viral/efeitos dos fármacos , Cães , Endonucleases/metabolismo , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/metabolismo , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/metabolismo , Orthomyxoviridae/metabolismo , Orthomyxoviridae/fisiologia , Pirazóis/síntese química , Pirazóis/química , Quinolinas/síntese química , Quinolinas/química , Quinolinas/farmacologia , Capuzes de RNA/metabolismo , RNA Viral/biossíntese , Transcrição Gênica/efeitos dos fármacos , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
10.
Anal Chem ; 84(15): 6391-9, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22712523

RESUMO

Recent studies have shown that NP (nucleoprotein), which possesses multiple functions in the viral life cycle, is a new potential anti-influenza drug target. NP inhibitors reliably induce conformational changes in NPs, and these changes may confer inhibition of the influenza virus. The six conserved tryptophan residues in NP can be used as an intrinsic probe to monitor the change in fluorescence of the tryptophan residues in the protein upon binding to an NP inhibitor. In the present study, we found that the fluorescence of recombinant NP proteins was quenched following the binding of available NP inhibitors (such as nucleozin) in a concentration- and time-dependent manner, which suggests that the inhibitor induced conformational changes in the NPs. The minimal fluorescence-quenching effect and weak binding constant of nucleozin to the swine-origin influenza virus H1N1pdm09 (SOIV) NP revealed that the SOIV is resistant to nucleozin. We have used the fluorescence-quenching property of tryptophans in NPs that were bound to ligands in a 96-well-plate-based drug screen to assess the ability of promising small molecules to interact with NPs and have identified one new anti-influenza drug, CSV0C001018, with a high SI value. This convenient method for drug screening may facilitate the development of antiviral drugs that target viruses other than the influenza virus, such as HIV and HBV.


Assuntos
Vírus da Influenza A Subtipo H1N1/metabolismo , Nucleoproteínas/antagonistas & inibidores , Espectrometria de Fluorescência , Triptofano/química , Sequência de Aminoácidos , Animais , Antivirais/química , Antivirais/farmacologia , Cães , Avaliação Pré-Clínica de Medicamentos , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Células Madin Darby de Rim Canino , Dados de Sequência Molecular , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Suínos
11.
BMC Biotechnol ; 12: 83, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23134743

RESUMO

BACKGROUND: There are few studies that have examined the potential of RNA inference (RNAi) to increase protein production in the baculovirus expression vector system (BEVS). Spodoptera frugiperda (fall armyworm) (Sf)-caspase-1-repressed stable cells exhibit resistance to apoptosis and enhancement of recombinant protein production. However, the mechanism of recombinant protein augmentation in baculovirus-infected Caspase-repressed insect cells has not been elucidated. RESULTS: In the current study, we utilized RNAi-mediated Sf-caspase-1-repressed stable cells to clarify how the resistance to apoptosis can enhance both intracellular (firefly luciferase) and extracellular (secreted alkaline phosphatase [SEAP]) recombinant protein production in BEVS. Since the expression of molecular chaperones is strongly associated with the maximal production of exogenous proteins in BEVS, the differential expression of molecular chaperones in baculovirus-infected stable cells was also analyzed in this study. CONCLUSION: The data indicated that the retention of expression of molecular chaperones in baculovirus-infected Sf-caspase-1-repressed stable cells give the higher recombinant protein accumulation.


Assuntos
Caspases/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Baculoviridae/genética , Caspases/química , Caspases/genética , Chaperonas Moleculares/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Interferência de RNA , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Células Sf9 , Spodoptera , Transfecção
12.
Bioorg Med Chem Lett ; 22(14): 4654-9, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22726931

RESUMO

A new class of FLT3 inhibitors has been identified based on the 3-phenyl-1H-5-pyrazolylamine scaffold. The structure-activity relationships led to the discovery of two carbamate series, and some potent compounds within these two series exhibited better growth inhibition of FLT3-mutated MOLM-13 cells than FLT3 inhibitors sorafenib (2) and ABT-869 (3). In particular, compound 8d exhibited the ability to regress tumors in mouse xenograft model using MOLM-13 cells.


Assuntos
Aminas/química , Inibidores de Proteínas Quinases/química , Pirazóis/química , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Aminas/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Camundongos , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Infect Dis ; 203(12): 1784-90, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21536800

RESUMO

BACKGROUND: Enterovirus 71 (EV71) can cause severe diseases and even lead to death in children. There is no vaccine or specific antiviral therapy to prevent or cure EV71 infection. Although interferon (IFN)-α has been used in the treatment of several viral infections, we found that IFN-α alone was ineffective in restricting EV71 replication in Vero cells. METHODS: Through a bioinformatics analysis, several cellular proteins in the IFN response pathway were identified as susceptible substrates that might be degraded by the EV71-encoded 3C protease (3C(pro)). RESULTS: Indeed, IRF9 was shown to be vulnerable to 3C(pro) cleavage, as revealed by enzyme-based and cell-based assays. Thus, the IFN-mediated antiviral mechanism compromised by the viral 3C(pro) in EV71-infected cells may be accountable, at least partially, for that IFN-α cannot inhibit EV71 replication. Because rupintrivir (AG7088) is known to be an effective EV71 inhibitor, we investigated the effects of the combination of rupintrivir and IFN-α on EV71 replication and found that they strongly synergized with each other in inhibiting EV71 replication. CONCLUSIONS: Because rupintrivir was shown to be generally tolerable in earlier clinical investigations, it is worth evaluating whether a combination of rupintrivir and IFN-α could be an effective treatment for EV71.


Assuntos
Antivirais/farmacologia , Enterovirus Humano A/efeitos dos fármacos , Interferon-alfa/farmacologia , Isoxazóis/farmacologia , Pirrolidinonas/farmacologia , Algoritmos , Animais , Western Blotting , Chlorocebus aethiops , Primers do DNA , Regulação para Baixo , Sinergismo Farmacológico , Quimioterapia Combinada , Enterovirus Humano A/genética , Enterovirus Humano A/fisiologia , Infecções por Enterovirus/tratamento farmacológico , Humanos , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Fenilalanina/análogos & derivados , Reação em Cadeia da Polimerase , Proteínas Recombinantes/metabolismo , Rabdomiossarcoma , Células Tumorais Cultivadas , Valina/análogos & derivados , Células Vero , Replicação Viral/efeitos dos fármacos
14.
Cells ; 11(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35053345

RESUMO

M2-polarization and the tumoricidal to tumor-promoting transition are commonly observed with tumor-infiltrating macrophages after interplay with cancer cells or/and other stroma cells. Our previous study indicated that macrophage M2-polarization can be induced by extracellular HSP90α (eHSP90α) secreted from endothelial-to-mesenchymal transition-derived cancer-associated fibroblasts. To extend the finding, we herein validated that eHSP90α-induced M2-polarized macrophages exhibited a tumor-promoting activity and the promoted tumor tissues had significant increases in microvascular density but decreases in CD4+ T-cell level. We further investigated the signaling pathways occurring in eHSP90α-stimulated macrophages. When macrophages were exposed to eHSP90α, CD91 and toll-like receptor 4 (TLR4) functioned as the receptor/co-receptor for eHSP90α binding to recruit interleukin (IL)-1 receptor-associated kinases (IRAKs) and myeloid differentiation factor 88 (MyD88), and next elicited a canonical CD91/MyD88-IRAK1/4-IκB kinase α/ß (IKKα/ß)-nuclear factor-κB (NF-κB)/interferon regulatory factor 3 (IRF3) signaling pathway. Despite TLR4-MyD88 complex-associated activations of IKKα/ß, NF-κB and IRF3 being well-known as involved in macrophage M1-activation, our results demonstrated that the CD91-TLR4-MyD88 complex-associated IRAK1/4-IKKα/ß-NF-κB/IRF3 pathway was not only directly involved in M2-associated CD163, CD204, and IL-10 gene expressions but also required for downregulation of M1 inflammatory cytokines. Additionally, Janus kinase 2 (JAK2) and tyrosine kinase 2 (TYK2) were recruited onto MyD88 to induce the phosphorylation and activation of the transcription factor signal transducer and activator of transcription-3 (STAT-3). The JAK2/TYK2-STAT-3 signaling is known to associate with tumor promotion. In this study, the MyD88-JAK2/TYK2-STAT-3 pathway was demonstrated to contribute to eHSP90α-induced macrophage M2-polarization by regulating the expressions of M1- and M2-related genes, proangiogenic protein vascular endothelial growth factor, and phagocytosis-interfering factor Sec22b.


Assuntos
Espaço Extracelular/química , Proteínas de Choque Térmico HSP90/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Janus Quinase 2/metabolismo , Macrófagos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , TYK2 Quinase/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Polaridade Celular , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Neoplasias , Neovascularização Fisiológica , Fagocitose , Células RAW 264.7 , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
15.
Bioorg Med Chem ; 19(14): 4173-82, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21708468

RESUMO

Preclinical investigations and early clinical trial studies suggest that FLT3 inhibitors offer a viable therapy for acute myeloid leukemia. However, early clinical data for direct FLT3 inhibitors provided only modest results because of the failure to fully inhibit FLT3. We have designed and synthesized a novel class of 3-phenyl-1H-5-pyrazolylamine-derived compounds as FLT3 inhibitors which exhibit potent FLT3 inhibition and high selectivity toward different receptor tyrosine kinases. The structure-activity relationships led to the discovery of two series of FLT3 inhibitors, and some potent compounds within these two series exhibited comparable potency to FLT3 inhibitors sorafenib (3) and ABT-869 (4) in both wt-FLT3 enzyme inhibition and FLT3-ITD inhibition on cell growth (MOLM-13 and MV4;11 cells). In particular, the selected compound 12a exhibited the ability to regress tumors in mouse xenograft models using MOLM-13 and MV4;11 cells.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Benzenossulfonatos/química , Benzenossulfonatos/farmacologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indazóis/química , Indazóis/farmacologia , Camundongos , Estrutura Molecular , Niacinamida/análogos & derivados , Compostos de Fenilureia/química , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/síntese química , Pirazóis/química , Piridinas/química , Piridinas/farmacologia , Sorafenibe , Estereoisomerismo , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Tirosina Quinase 3 Semelhante a fms/metabolismo
16.
J Nat Prod ; 74(4): 580-4, 2011 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-21391660

RESUMO

Diosgenin (3ß-hydroxy-5-spirostene, 1), a plant-derived sapogenin, is used as a dietary supplement. However, the biological effects of 1 related to viral replication remain unexplored. In this study, the effects of 1 on hepatitis C virus (HCV) replication were evaluated. Based on a reporter-based HCV subgenomic replicon system, 1 was found to inhibit HCV replication at low micromolar concentrations. The EC(50) (concentration at which 50% of HCV replication is inhibited) of 1 was 3.8 µM. No cellular toxicity was observed at this concentration. Diosgenin (1) also significantly reduced the levels of viral RNA and viral proteins as evaluated by quantitative real-time reverse transcriptase PCR and Western blot analysis, respectively. In addition, in an alternative HCV antiviral system more closely aligned to all steps involved in the HCV infection and life cycle, 1 totally abolished HCV replication at 20 µM. Moreover, 1 reduced the phosphorylation of signal transducer and activator of transcription 3. A combination of 1 and interferon-α exerted an additive effect on the resultant anti-HCV activity.


Assuntos
Antivirais/farmacologia , Diosgenina/farmacologia , Hepacivirus/efeitos dos fármacos , Sapogeninas/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Suplementos Nutricionais/análise , Diosgenina/química , Diosgenina/isolamento & purificação , Hepacivirus/genética , Humanos , Estrutura Molecular , RNA Viral/análise , RNA Viral/efeitos dos fármacos , Sapogeninas/química , Sapogeninas/isolamento & purificação , Proteínas não Estruturais Virais/efeitos dos fármacos
17.
J Antimicrob Chemother ; 65(4): 676-83, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20089540

RESUMO

OBJECTIVES: Enterovirus 71 (EV71) causes serious diseases in humans. The aim of this study was to examine the effects of aurintricarboxylic acid (ATA) on EV71 replication and to explore the underlying mechanism. METHODS: To measure the activity of ATA in inhibiting the cytopathic effect (CPE) of EV71, a cell-based neutralization (inhibition of virus-induced CPE) assay was performed. The effect of ATA was further confirmed using plaque reduction and viral yield reduction assays. A time of addition assay was performed to identify the mechanisms of ATA's anti-EV71 activity. We examined the effects of ATA on the following key steps involved in virus replication: (i) translation of the internal ribosomal entry site (IRES)-mediated viral polyprotein; (ii) the proteolytic activity of viral proteases 2A and/or 3C; and (iii) the viral 3D RNA-dependent RNA polymerase (RdRp) activity. RESULTS: In this study, ATA was found to be a potent inhibitor of the replication of EV71. In the antiviral neutralization assay, ATA exhibited inhibitory activity against EV71 (TW/4643/98) and EV71 (TW/2231/98). Plaque assay further demonstrated that ATA inhibited EV71 replication with an EC(50) (effective concentration at which 50% of plaques were removed) of 2.9 microM. Studies on the mechanism of action revealed that ATA targets the early stage of the viral life cycle after viral entry. ATA was able to inhibit the RdRp activity of EV71, while neither the IRES-mediated translation of viral polyprotein nor the viral 3C protease activity was affected. CONCLUSIONS: Overall, the findings in this study suggest that ATA is able to effectively inhibit EV71 replication through interfering with the viral 3D polymerase.


Assuntos
Antivirais/farmacologia , Ácido Aurintricarboxílico/farmacologia , Enterovirus Humano A/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Efeito Citopatogênico Viral , Humanos , Células Vero , Ensaio de Placa Viral
18.
J Antimicrob Chemother ; 65(1): 63-71, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19892833

RESUMO

OBJECTIVES: The emergence of oseltamivir-resistant viruses raised the global threat with regard to influenza virus infection. To develop alternative antiviral agents against influenza virus infection is significant and urgent. METHODS: A neutralization test was applied as a screening assay and a plaque reduction assay was used for confirmation. Expression plasmids for viral ribonucleoproteins (RNPs) and a plasmid that allowed expression of a pseudoviral reporter RNA were transfected into cells to investigate the effects of a novel antiviral compound on viral RNA synthesis. RESULTS: BPR2-D2 was identified as a novel inhibitor against influenza virus from a hit obtained from high throughput screening of 20 000 or more compounds. BPR2-D2 exhibited an excellent antiviral efficacy for the oseltamivir-resistant virus (EC(50) ranging from 0.021 to 0.040 microM). No resistant virus was produced throughout 20 passages in the presence of BPR2-D2, whereas oseltamivir-resistant virus was generated at passage 8 using the same experimental system. A molecular target other than neuraminidase (NA) was found because BPR2-D2 inhibited the synthesis of viral RNA that was driven by influenza viral RNP in a transfection assay. BPR2-D2 also exhibited a broad antiviral spectrum against various strains of influenza A and influenza B viruses. CONCLUSIONS: BPR2-D2 was identified as a novel inhibitor of influenza virus. It may target viral RNPs that are responsible for viral RNA synthesis. Targeting different molecules compared with NA allows BPR2-D2 to inhibit oseltamivir-resistant viruses.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral , Orthomyxoviridae/efeitos dos fármacos , Oseltamivir/farmacologia , Ribonucleoproteínas/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Testes de Neutralização , Orthomyxoviridae/genética , Ribonucleoproteínas/genética , Transfecção , Ensaio de Placa Viral , Proteínas Virais/genética
19.
Antimicrob Agents Chemother ; 53(11): 4825-34, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19721068

RESUMO

A cell culture system for the production of hepatitis C virus (HCV) whole virions has greatly accelerated studies of the virus life cycle and the discovery of anti-HCV agents. However, the quantification of the HCV titers in a whole-virus infection/replication system currently relies mostly on reverse transcription-PCR or immunofluorescence assay, which would be cumbersome for high-throughput drug screening. To overcome this problem, this study has generated a novel cell line, Huh7.5-EG(Delta4B5A)SEAP, that carries a dual reporter, EG(Delta4B5A)SEAP. The EG(Delta4B5A)SEAP reporter is a viral protease-cleavable fusion protein in which the enhanced green fluorescence protein is linked to secreted alkaline phosphatase (SEAP) in frame via Delta4B5A, a short peptide cleavage substrate for NS3/4A viral protease. This study demonstrates that virus replication/infection in the Huh7.5-EG(Delta4B5A)SEAP cells can be quantitatively indicated by measuring the SEAP activity in cell culture medium. The levels of SEAP released from HCV-infected Huh7.5-EG(Delta4B5A)SEAP cells correlated closely with the amounts of HCV in the inocula. The Huh7.5-EG(Delta4B5A)SEAP cells were also shown to be a suitable host for the discovery of anti-HCV inhibitors by using known compounds that target multiple stages of the HCV life cycle. The Z'-factor of this assay ranged from 0.64 to 0.74 in 96-well plates, indicating that this reporter system is suitable for high-throughput screening of prospective anti-HCV agents.


Assuntos
Fosfatase Alcalina/metabolismo , Proteínas de Transporte/fisiologia , Hepacivirus/fisiologia , Proteínas não Estruturais Virais/fisiologia , Proteínas Virais/fisiologia , Fosfatase Alcalina/genética , Antivirais/farmacologia , Proteínas de Transporte/genética , Linhagem Celular , Genes Reporter , Hepacivirus/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas não Estruturais Virais/genética , Proteínas Virais/genética , Replicação Viral
20.
Antiviral Res ; 79(1): 62-70, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18353452

RESUMO

Herpes simplex virus type 1 (HSV-1) can establish latent infection in the nervous system and usually leads to life-threatening diseases in immunocompromised individuals upon reactivation. Treatment with conventional nucleoside analogue such as acyclovir is effective in most cases, but drug-resistance may arise due to prolonged treatment in immunocompromised individuals. In this study, we identified an in-use medication, digitoxin, which actively inhibited HSV-1 replication with a 50% effective concentration (EC(50)) of 0.05 microM. The 50% cytotoxicity concentration (CC(50)) of digitoxin is 10.66 microM and the derived selective index is 213. Several structural analogues of digitoxin such as digoxin, ouabain octahydrate and G-strophanthin also showed anti-HSV activity. The inhibitory effects of digitoxin are likely to be introduced at the early stage of HSV-1 replication and the virus release stage. The observation that digitoxin can inhibit acyclovir-resistant viruses further implicates that digitoxin represents a novel drug class with distinct antiviral mechanisms from traditional drugs.


Assuntos
Antivirais/farmacologia , Digitoxina/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia , Animais , Chlorocebus aethiops , DNA Viral/efeitos dos fármacos , DNA Viral/genética , Digitoxina/química , Avaliação Pré-Clínica de Medicamentos , Expressão Gênica/efeitos dos fármacos , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Humanos , Células Vero , Proteínas Virais/genética , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Eliminação de Partículas Virais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA