Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Cardiovasc Electrophysiol ; 21(5): 557-63, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20021518

RESUMO

INTRODUCTION: Lesion placement and transmurality are critical factors in the success of cardiac transcatheter radiofrequency ablation (RFA) treatments for supraventricular arrhythmias. This study investigated the capabilities of catheter transducer based acoustic radiation force impulse (ARFI) ultrasound imaging for quantifying ablation lesion dimensions. METHODS AND RESULTS: RFA lesions were created in vitro in porcine ventricular myocardium and imaged with an intracardiac ultrasound catheter transducer capable of acquiring spatially registered B-mode and ARFI images. The myocardium was sliced along the imaging plane and photographed. The maximum ARFI-induced displacement images of the lesion were normalized and spatially registered with the photograph by matching the surfaces of the tissue in the B-mode and photographic images. The lesion dimensions determined by a manual segmentation of the photographed lesion based on the visible discoloration of the tissue were compared to automatic segmentations of the ARFI image using 2 different calculated thresholds. ARFI imaging accurately localized and sized the lesions within the myocardium. Differences in the maximum lateral and axial dimensions were statistically below 2 mm and 1 mm, respectively, for the 2 thresholding methods, with mean percent overlap of 68.7 +/- 5.21% and 66.3 +/- 8.4% for the 2 thresholds used. CONCLUSION: ARFI imaging is capable of visualizing myocardial RFA lesion dimensions to within 2 mm in vitro. Visualizing lesions during transcatheter cardiac ablation procedures could improve the success of the treatment by imaging lesion line discontinuity and potentially reducing the required number of ablation lesions and procedure time.


Assuntos
Ablação por Cateter/efeitos adversos , Diagnóstico por Imagem/métodos , Miocárdio/patologia , Animais , Elasticidade , Processamento de Imagem Assistida por Computador , Suínos
2.
Ultrasound Med Biol ; 33(11): 1706-19, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17698282

RESUMO

Acoustic radiation force impulse (ARFI) imaging has been demonstrated to be capable of visualizing variations in local stiffness within soft tissue. Recent advances in ARFI beam sequencing and parallel imaging have shortened acquisition times and lessened transducer heating to a point where ARFI acquisitions can be executed at high frame rates on commercially available diagnostic scanners. In vivo ARFI images were acquired with a linear array placed on an exposed canine heart. The electrocardiogram (ECG) was also recorded. When coregistered with the ECG, ARFI displacement images of the heart reflect the expected myocardial stiffness changes during the cardiac cycle. A radio-frequency ablation was performed on the epicardial surface of the left ventricular free wall, creating a small lesion that did not vary in stiffness during a heartbeat, though continued to move with the rest of the heart. ARFI images showed a hemispherical, stiffer region at the ablation site whose displacement magnitude and temporal variation through the cardiac cycle were less than the surrounding untreated myocardium. Sequences with radiation force pulse amplitudes set to zero were acquired to measure potential cardiac motion artifacts within the ARFI images. The results show promise for real-time cardiac ARFI imaging.


Assuntos
Ecocardiografia/métodos , Interpretação de Imagem Assistida por Computador/métodos , Animais , Artefatos , Ablação por Cateter , Cães , Eletrocardiografia , Ventrículos do Coração/diagnóstico por imagem , Contração Miocárdica/fisiologia , Pericárdio/diagnóstico por imagem , Pericárdio/cirurgia , Função Ventricular , Função Ventricular Esquerda/fisiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-17523564

RESUMO

Intracardiac echocardiography (ICE) has been demonstrated to be an effective imaging modality for the guidance of several cardiac procedures, including radiofrequency ablation (RFA). However, assessing lesion size during the ablation with conventional ultrasound has been limited, as the associated changes within the B-mode images often are subtle. Acoustic radiation force impulse (ARFI) imaging is a promising modality to monitor RFAs as it is capable of visualizing variations in local stiffnesses within the myocardium. We demonstrate ARFI imaging with an intracardiac probe that creates higher quality images of the developing lesion. We evaluated the performance of an ICE probe with ARFI imaging in monitoring RFAs. The intracardiac probe was used to create high contrast, high resolution ARFI images of a tissue-mimicking phantom containing stiffer spherical inclusions. The probe also was used to examine an excised segment of an ovine right ventricle with a RFA-created surface lesion. Although the lesion was not visible in conventional B-mode images, the ARFI images were able to show the boundaries between the lesion and the surrounding tissue. ARFI imaging with an intracardiac probe then was used to monitor cardiac ablations in vivo. RFAs were performed within the right atrium of an ovine heart, and B-mode and ARFI imaging with the intracardiac probe was used to monitor the developing lesions. Although there was little indication of a developing lesion within the B-mode images, the corresponding ARFI images displayed regions around the ablation site that displaced less.


Assuntos
Algoritmos , Cateterismo Cardíaco/instrumentação , Ablação por Cateter/métodos , Ecocardiografia/instrumentação , Aumento da Imagem/instrumentação , Cirurgia Assistida por Computador/instrumentação , Transdutores , Animais , Ablação por Cateter/instrumentação , Ecocardiografia/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ovinos , Cirurgia Assistida por Computador/métodos
4.
J Ther Ultrasound ; 3: 17, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413296

RESUMO

BACKGROUND: Deep Bleeder Acoustic Coagulation (DBAC) is an ultrasound image-guided high-intensity focused ultrasound (HIFU) method proposed to automatically detect and localize (D&L) and treat deep, bleeding, combat wounds in the limbs of soldiers. A prototype DBAC system consisting of an applicator and control unit was developed for testing on animals. To enhance control, and thus safety, of the ultimate human DBAC autonomous product system, a thermal coagulation strategy that minimized cavitation, boiling, and non-linear behaviors was used. MATERIAL AND METHODS: The in vivo DBAC applicator design had four therapy tiles (Tx) and two 3D (volume) imaging probes (Ix) and was configured to be compatible with a porcine limb bleeder model developed in this research. The DBAC applicator was evaluated under quantitative test conditions (e.g., bleeder depths, flow rates, treatment time limits, and dose exposure time limits) in an in vivo study (final exam) comprising 12 bleeder treatments in three swine. To quantify blood flow rates, the "bleeder" targets were intact arterial branches, i.e., the superficial femoral artery (SFA) and a deep femoral artery (DFA). D&L identified, characterized, and targeted bleeders. The therapy sequence selected Tx arrays and determined the acoustic power and Tx beam steering, focus, and scan patterns. The user interface commands consisted of two buttons: "Start D&L" and "Start Therapy." Targeting accuracy was assessed by necropsy and histologic exams and efficacy (vessel coagulative occlusion) by angiography and histology. RESULTS: The D&L process (Part I article, J Ther Ultrasound, 2015 (this issue)) executed fully in all cases in under 5 min and targeting evaluation showed 11 of 12 thermal lesions centered on the correct vessel subsection, with minimal damage to adjacent structures. The automated therapy sequence also executed properly, with select manual steps. Because the dose exposure time limit (t dose ≤ 30 s) was associated with nonefficacious treatment, 60-s dosing and dual-dosing was also pursued. Thrombogenic evidence (blood clotting) and collagen denaturation (vessel shrinkage) were found in necropsy and histologically in all targeted SFAs. Acute SFA reductions in blood flow (20-30 %) were achieved in one subject, and one partial and one complete vessel occlusion were confirmed angiographically. The complete occlusion case was achieved with a dual dose (90 s total exposure) with focal intensity ≈500 W/cm(2) (spatial average, temporal average). CONCLUSIONS: While not meeting all in vivo objectives, the overall performance of the DBAC applicator was positive. In particular, D&L automation workflow was verified during each of the tests, with processing times well under specified (10 min) limits, and all bleeder branches were detected and localized. Further, gross necropsy and tissue examination confirmed that the HIFU thermal lesions were coincident with the target vessel locations in over 90 % of the multi-array dosing treatments. The SFA/DFA bleeder models selected, and the protocols used, were the most suitable practical model options for the given DBAC anatomical and bleeder requirements. The animal models were imperfect in some challenging aspects, including requiring tissue-mimicking material (TMM) standoffs to achieve deep target depths, thereby introducing device-tissue motion, with resultant imaging artifacts. The model "bleeders" involved intact vessels, which are subject to less efficient heating and coagulation cascade behaviors than true puncture injuries.

5.
J Ther Ultrasound ; 3: 16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26388994

RESUMO

BACKGROUND: Bleeding from limb injuries is a leading cause of death on the battlefield, with deep wounds being least accessible. High-intensity focused ultrasound (HIFU) has been shown capable of coagulation of bleeding (cautery). This paper describes the development and refereed in vitro evaluation of an ultrasound (US) research prototype deep bleeder acoustic coagulation (DBAC) cuff system for evaluating the potential of DBAC in the battlefield. The device had to meet quantitative performance metrics on automated operation, therapeutic heating, bleeder detection, targeting accuracy, operational time limits, and cuff weight over a range of limb sizes and bleeder depths. These metrics drove innovative approaches in image segmentation, bleeder detection, therapy transducers, beam targeting, and dose monitoring. A companion (Part II) paper discusses the in vivo performance testing of an animal-specific DBAC system. MATERIALS AND METHODS: The cuff system employed 3D US imaging probes ("Ix") for detection and localization (D&L) and targeting, with the bleeders being identified by automated spectral Doppler analysis of flow waveforms. Unique high-element-count therapeutic arrays ("Tx") were developed, with the final cuff prototype having 21 Tx's and 6 Ix's. Spatial registration of Ix's and Tx's was done with a combination of image-registration, acoustic time-of-flight measurement, and tracking of the cuff shape via a fiber optic sensor. Acoustic radiation force impulse (ARFI) imaging or thermal strain imaging (TSI) at low-power doses were used to track the HIFU foci in closed-loop targeting. Recurrent neural network (RNN) acoustic thermometry guided closed-loop dosing. The cuff was tested on three phantom "limb" sizes: diameters = 25, 15, and 7.5 cm, with bleeder depths from 3.75 to 12.5 cm. "Integrated Phantoms" (IntP) were used for assessing D&L, closed-loop targeting, and closed-loop dosing. IntPs had surrogate arteries and bleeders, with blood-mimicking fluids moved by a pulsatile pump, and thermocouples (TCs) on the bleeders. Acoustic dosing was developed and tested using "HIFU Phantoms" having precisely located TCs, with end-of-dose target ∆T = 33-58 °C, and skin temperature ∆T ≤ 20 °C, being required. RESULTS: Most DBAC cuff performance requirements were met, including cuff weight, power delivery, targeting accuracy, skin temperature limit, and autonomous operation. The automated D&L completed in 9 of 15 tests (65 %), detecting the smallest (0.6 mm) bleeders, but it had difficulty with the lowest flow (3 cm/sec) bleeders, and in localizing bleeders in the smallest (7.5 cm) phantoms. D&L did not complete within the 9-min limit (results ranged 10-21 min). Closed-loop targeting converged in 20 of 31 tests (71 %), and closed-loop dosing power shut-off at preset ∆Ts was operational. SUMMARY AND CONCLUSION: The main performance objectives of the prototype DBAC cuff were met, however the designs required a number of challenging new technology developments. The novel Tx arrays exhibited high power with significant beam steering and focusing flexibility, while their integrated electronics enabled the required compact, lightweight configurability and simplified driving controls and cable/connector architecture. The compounded 3D imaging, combined with sophisticated software algorithms, enabled automated D&L and initial targeting and closed-loop targeting feedback via TSI. The development of RNN acoustic thermometry made possible feedback-controlled dosing. The lightweight architecture required significant design and fabrication effort to meet mechanical functionalities. Although not all target specifications were met, future engineering solutions addressing these performance deficiencies are proposed. Lastly, the program required very complex limb test phantoms and, while very challenging to develop, they performed well.

6.
Ultrason Imaging ; 34(3): 142-58, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22972912

RESUMO

Acoustic radiation force impulse (ARFI) imaging has been shown to be capable of imaging local myocardial stiffness changes throughout the cardiac cycle. Expanding on these results, the authors present experiments using cardiac ARFI imaging to visualize and quantify the propagation of mechanical stiffness during ventricular systole. In vivo ARFI images of the left ventricular free wall of two exposed canine hearts were acquired. Images were formed while the heart was externally paced by one of two electrodes positioned on the epicardial surface and either side of the imaging plane. Two-line M-mode ARFI images were acquired at a sampling frequency of 120 Hz while the heart was paced from an external stimulating electrode. Two-dimensional ARFI images were also acquired, and an average propagation velocity across the lateral field of view was calculated. Directions and speeds of myocardial stiffness propagation were measured and compared with the propagations derived from the local electrocardiogram (ECG), strain, and tissue velocity measurements estimated during systole. In all ARFI images, the direction of myocardial stiffness propagation was seen to be away from the stimulating electrode and occurred with similar velocity magnitudes in either direction. When compared with the local epicardial ECG, the mechanical stiffness waves were observed to travel in the same direction as the propagating electrical wave and with similar propagation velocities. In a comparison between ARFI, strain, and tissue velocity imaging, the three methods also yielded similar propagation velocities.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca/métodos , Ecocardiografia/métodos , Técnicas de Imagem por Elasticidade/métodos , Animais , Estimulação Cardíaca Artificial , Cães , Eletrocardiografia , Aumento da Imagem/métodos , Análise dos Mínimos Quadrados , Sístole , Transdutores
7.
Ultrasound Med Biol ; 37(7): 1087-100, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21645966

RESUMO

A noninvasive method of characterizing myocardial stiffness could have significant implications in diagnosing cardiac disease. Acoustic radiation force (ARF)-driven techniques have demonstrated their ability to discern elastic properties of soft tissue. For the purpose of myocardial elasticity imaging, a novel ARF-based imaging technique, the displacement ratio rate (DRR) method, was developed to rank the relative stiffnesses of dynamically varying tissue. The basis and performance of this technique was demonstrated through numerical and phantom imaging results. This new method requires a relatively small temporal (<1 ms) and spatial (tenths of mm(2)) sampling window and appears to be independent of applied ARF magnitude. The DRR method was implemented in two in vivo canine studies, during which data were acquired through the full cardiac cycle by imaging directly on the exposed epicardium. These data were then compared with results obtained by acoustic radiation force impulse (ARFI) imaging and shear wave velocimetry, with the latter being used as the gold standard. Through the cardiac cycle, velocimetry results portray a range of shear wave velocities from 0.76-1.97 m/s, with the highest velocities observed during systole and the lowest observed during diastole. If a basic shear wave elasticity model is assumed, such a velocity result would suggest a period of increased stiffness during systole (when compared with diastole). Despite drawbacks of the DRR method (i.e., sensitivity to noise and limited stiffness range), its results predicted a similar cyclic stiffness variation to that offered by velocimetry while being insensitive to variations in applied radiation force.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Cardiopatias/diagnóstico por imagem , Acústica , Animais , Modelos Animais de Doenças , Cães , Módulo de Elasticidade , Eletrocardiografia , Análise de Elementos Finitos , Cardiopatias/fisiopatologia , Imageamento Tridimensional , Contração Miocárdica/fisiologia , Imagens de Fantasmas
8.
Ultrason Imaging ; 31(3): 201-13, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19771962

RESUMO

Shear wave elasticity imaging (SWEI) was employed to track acoustic radiation force impulse (ARFI)-induced shear waves in the mid-myocardium of the left ventricular free wall (LVFW) of a beating canine heart. Shear waves were generated and tracked with a linear ultrasound transducer that was placed directly on the exposed epicardium. Acquisition was ECG-gated and coincided with the mid-diastolic portion of the cardiac cycle. Axial displacement profiles consistent with shear wave propagation were clearly evident in all SWEI acquisitions (i.e., those including an ARFI excitation); displacement data from control cases (i.e., sequences lacking an ARFI excitation) offered no evidence of shear wave propagation and yielded a peak absolute mean displacement below 0.31 microm after motion filtering. Shear wave velocity estimates ranged from 0.82 to 2.65 m/s and were stable across multiple heartbeats for the same interrogation region, with coefficients of variation less than 19% for all matched acquisitions. Variations in velocity estimates suggest a spatial dependence of shear wave velocity through the mid-myocardium of the LVFW, with velocity estimates changing, in limited cases, through depth and lateral position.


Assuntos
Ecocardiografia/métodos , Técnicas de Imagem por Elasticidade/métodos , Interpretação de Imagem Assistida por Computador/métodos , Animais , Cães , Eletrocardiografia , Ventrículos do Coração/diagnóstico por imagem , Contração Miocárdica/fisiologia , Reologia , Função Ventricular/fisiologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-19942530

RESUMO

In ultrasound images, clutter is a noise artifact most easily observed in anechoic or hypoechoic regions. It appears as diffuse echoes overlying anatomical structures of diagnostic importance, obscuring tissue borders and reducing image contrast. A novel clutter reduction method for abdominal images is proposed, wherein the abdominal wall is displaced during successive-frame image acquisitions. A region of clutter distal to the abdominal wall was observed to move with the abdominal wall, and finite impulse response (FIR) and blind source separation (BSS) motion filters were implemented to reduce this clutter. The proposed clutter reduction method was tested in simulated and phantom data and applied to fundamental and harmonic in vivo bladder and liver images from 2 volunteers. Results show clutter reductions ranging from 0 to 18 dB in FIR-filtered images and 9 to 27 dB in BSS-filtered images. The contrast-to-noise ratio was improved by 21 to 68% and 44 to 108% in FIR- and BSS-filtered images, respectively. Improvements in contrast ranged from 4 to 12 dB. The method shows promise for reducing clutter in other abdominal images.


Assuntos
Parede Abdominal/diagnóstico por imagem , Algoritmos , Artefatos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Ultrassonografia/métodos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Artigo em Inglês | MEDLINE | ID: mdl-19213633

RESUMO

The real-time application of acoustic radiation force impulse (ARFI) imaging requires both short acquisition times for a single ARFI image and repeated acquisition of these frames. Due to the high energy of pulses required to generate appreciable radiation force, however, repeated acquisitions could result in substantial transducer face and tissue heating. We describe and evaluate several novel beam sequencing schemes which, along with parallel-receive acquisition, are designed to reduce acquisition time and heating. These techniques reduce the total number of radiation force impulses needed to generate an image and minimize the time between successive impulses. We present qualitative and quantitative analyses of the trade-offs in image quality resulting from the acquisition schemes. Results indicate that these techniques yield a significant improvement in frame rate with only moderate decreases in image quality. Tissue and transducer face heating resulting from these schemes is assessed through finite element method modeling and thermocouple measurements. Results indicate that heating issues can be mitigated by employing ARFI acquisition sequences that utilize the highest track-to-excitation ratio possible.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Processamento de Imagem Assistida por Computador/métodos , Técnicas de Ablação , Algoritmos , Animais , Bovinos , Simulação por Computador , Ecocardiografia , Análise de Elementos Finitos , Temperatura Alta , Imagens de Fantasmas , Radiação , Transdutores
11.
Ultrason Imaging ; 31(3): 183-200, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19771961

RESUMO

Acoustic radiation force impulse (ARFI) imaging has been demonstrated to be capable of visualizing changes in local myocardial stiffness through a normal cardiac cycle. As a beating heart involves rapidly-moving tissue with cyclically-varying myocardial stiffness, it is desirable to form images with high frame rates and minimize susceptibility to motion artifacts. Three novel ARFI imaging methods, pre-excitation displacement estimation, parallel-transmit excitation and parallel-transmit tracking, were implemented. Along with parallel-receive, ECG-gating and multiplexed imaging, these new techniques were used to form high-quality, high-resolution epicardial ARFI images. Three-line M-mode, extended ECG-gated three-line M-mode and ECG-gated two-dimensional ARFI imaging sequences were developed to address specific challenges related to cardiac imaging. In vivo epicardial ARFI images of an ovine heart were formed using these sequences and the quality and utility of the resultant ARFI-induced displacement curves were evaluated. The ARFI-induced displacement curves demonstrate the potential for ARFI imaging to provide new and unique information into myocardial stiffness with high temporal and spatial resolution.


Assuntos
Ecocardiografia/métodos , Técnicas de Imagem por Elasticidade/métodos , Interpretação de Imagem Assistida por Computador/métodos , Animais , Eletrocardiografia , Átrios do Coração/diagnóstico por imagem , Ventrículos do Coração/diagnóstico por imagem , Movimento , Contração Miocárdica/fisiologia , Imagens de Fantasmas , Reprodutibilidade dos Testes , Ovinos , Função Ventricular/fisiologia
12.
Ultrason Imaging ; 30(2): 63-77, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18939609

RESUMO

Intracardiac echocardiography (ICE) has demonstrated utility in providing high-resolution cardiac ultrasound images for guidance of numerous catheter-based interventions, including radiofrequency ablations (RFA). However, the training of interventionalists and refinement of procedures involving intracardiac catheters is costly and time consuming due to necessary clinical and animal studies. As a result, research and development of ICE for other purposes is gradual and deliberate. Intracardiac acoustic radiation force impulse (ARFI) imaging has been demonstrated to be a suitable modality to monitor the progress of RFA procedures; however, a clinical protocol has been slow to develop due to the expense and demands of clinical experiments. We report on the development and use of an ex vivo heart model to evaluate ICE and intracardiac ARFI imaging. The ability of this model to provide clinically-relevant intracardiac imaging angles was investigated by inserting an intracardiac probe into the heart and imaging it from various positions and orientations. ARFI images of all four chambers also were formed. RFAs were also performed to create stiffer lesions within the right and left ventricles. Upon completion of the ablation, ARFI imaging was used to visualize the lesion and compared with images taken from pathology.The results show the ovine heart model to be a suitable apparatus for recreating several clinically-relevant intracardiac viewing angles of the heart. Also, the results indicate the potential of the heart model to be a valuable tool in the future development and refinement of a clinical protocol for intracardiac ARFI imaging based guidance and assessment of cardiac radiofrequency ablations.


Assuntos
Ecocardiografia/métodos , Técnicas de Imagem por Elasticidade/métodos , Aumento da Imagem/métodos , Ultrassonografia de Intervenção/métodos , Animais , Cateterismo Cardíaco , Ablação por Cateter , Processamento de Imagem Assistida por Computador , Técnicas In Vitro , Imagens de Fantasmas , Carneiro Doméstico
13.
Ultrasound Med Biol ; 34(10): 1590-603, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18471954

RESUMO

The initial results from clinical trials investigating the utility of acoustic radiation force impulse (ARFI) imaging for use with radio-frequency ablation (RFA) procedures in the liver are presented. To date, data have been collected from 6 RFA procedures in 5 unique patients. Large displacement contrast was observed in ARFI images of both pre-ablation malignancies (mean 7.5 dB, range 5.7-11.9 dB) and post-ablation thermal lesions (mean 6.2 dB, range 5.1-7.5 dB). In general, ARFI images provided superior boundary definition of structures relative to the use of conventional sonography alone. Although further investigations are required, initial results are encouraging and demonstrate the clinical promise of the ARFI method for use in many stages of RFA procedures.


Assuntos
Carcinoma Hepatocelular/cirurgia , Ablação por Cateter/métodos , Técnicas de Imagem por Elasticidade/métodos , Neoplasias Hepáticas/cirurgia , Ultrassonografia de Intervenção/métodos , Idoso , Idoso de 80 Anos ou mais , Carcinoma Hepatocelular/diagnóstico por imagem , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/secundário , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA