Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Ano de publicação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 649, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38977989

RESUMO

BACKGROUND: The cold tolerance of rice is closely related to its production and geographic distribution. The identification of cold tolerance-related genes is of important significance for developing cold-tolerant rice. Dongxiang wild rice (Oryza rufipogon Griff.) (DXWR) is well-adapted to the cold climate of northernmost-latitude habitats ever found in the world, and is one of the most valuable rice germplasms for cold tolerance improvement. RESULTS: Transcriptome analysis revealed genes differentially expressed between Xieqingzao B (XB; a cold sensitive variety) and 19H19 (derived from an interspecific cross between DXWR and XB) in the room temperature (RT), low temperature (LT), and recovery treatments. The results demonstrated that chloroplast genes might be involved in the regulation of cold tolerance in rice. A high-resolution SNP genetic map was constructed using 120 BC5F2 lines derived from a cross between 19H19 and XB based on the genotyping-by-sequencing (GBS) technique. Two quantitative trait loci (QTLs) for cold tolerance at the early seedling stage (CTS), qCTS12 and qCTS8, were detected. Moreover, a total of 112 candidate genes associated with cold tolerance were identified based on bulked segregant analysis sequencing (BSA-seq). These candidate genes were divided into eight functional categories, and the expression trend of candidate genes related to 'oxidation-reduction process' and 'response to stress' differed between XB and 19H19 in the RT, LT and recovery treatments. Among these candidate genes, the expression level of LOC_Os12g18729 in 19H19 (related to 'response to stress') decreased in the LT treatment but restored and enhanced during the recovery treatment whereas the expression level of LOC_Os12g18729 in XB declined during recovery treatment. Additionally, XB contained a 42-bp deletion in the third exon of LOC_Os12g18729, and the genotype of BC5F2 individuals with a survival percentage (SP) lower than 15% was consistent with that of XB. Weighted gene coexpression network analysis (WGCNA) and modular regulatory network learning with per gene information (MERLIN) algorithm revealed a gene interaction/coexpression network regulating cold tolerance in rice. In the network, differentially expressed genes (DEGs) related to 'oxidation-reduction process', 'response to stress' and 'protein phosphorylation' interacted with LOC_Os12g18729. Moreover, the knockout mutant of LOC_Os12g18729 decreased cold tolerance in early rice seedling stage signifcantly compared with that of wild type. CONCLUSIONS: In general, study of the genetic basis of cold tolerance of rice is important for the development of cold-tolerant rice varieties. In the present study, QTL mapping, BSA-seq and RNA-seq were integrated to identify two CTS QTLs qCTS8 and qCTS12. Furthermore, qRT-PCR, genotype sequencing and knockout analysis indicated that LOC_Os12g18729 could be the candidate gene of qCTS12. These results are expected to further exploration of the genetic mechanism of CTS in rice and improve cold tolerance of cultivated rice by introducing the cold tolerant genes from DXWR through marker-assisted selection.


Assuntos
Temperatura Baixa , Oryza , Locos de Características Quantitativas , Plântula , Oryza/genética , Oryza/fisiologia , Locos de Características Quantitativas/genética , Plântula/genética , Plântula/fisiologia , Plântula/crescimento & desenvolvimento , Genes de Plantas , RNA-Seq , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Frio/genética
2.
Biol. Res ; 51: 7, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-888432

RESUMO

Abstract Background: Low phosphorus availability is a major factor restricting rice growth. Dongxiang wild rice (Oryza rufipogon Griff.) has many useful genes lacking in cultivated rice, including stress resistance to phosphorus deficiency, cold, salt and drought, which is considered to be a precious germplasm resource for rice breeding. However, the molecular mechanism of regulation of phosphorus deficiency tolerance is not clear. Results: In this study, cDNA libraries were constructed from the leaf and root tissues of phosphorus stressed and untreated Dongxiang wild rice seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in phosphorus stress response. The results indicated that 1184 transcripts were differentially expressed in the leaves (323 up-regulated and 861 down-regulated) and 986 transcripts were differentially expressed in the roots (756 up-regulated and 230 down-regulated). 43 genes were up-regulated both in leaves and roots, 38 genes were up-regulated in roots but down-regulated in leaves, and only 2 genes were down-regulated in roots but up-regulated in leaves. Among these differentially expressed genes, the detection of many transcription factors and functional genes demonstrated that multiple regulatory pathways were involved in phosphorus deficiency tolerance. Meanwhile, the differentially expressed genes were also annotated with gene ontology terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes pathway mapping, respectively. A set of the most important candidate genes was then identified by combining the differentially expressed genes found in the present study with previously identified phosphorus deficiency tolerance quantitative trait loci. Conclusion: The present work provides abundant genomic information for functional dissection of the phosphorus deficiency resistance of Dongxiang wild rice, which will be help to understand the biological regulatory mechanisms of phosphorus deficiency tolerance in Dongxiang wild rice.


Assuntos
Fósforo/deficiência , Oryza/genética , Estresse Fisiológico/genética , Perfilação da Expressão Gênica , Plântula/genética , Fósforo/farmacologia , Oryza/efeitos dos fármacos , Oryza/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Plântula/efeitos dos fármacos , Plântula/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA