Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ISME Commun ; 4(1): ycae017, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38481578

RESUMO

Recent metagenomic advancements have offered unprecedented insights into soil viral ecology. However, it remains a challenge to select the suitable metagenomic method for investigating soil viruses under different environmental conditions. Here, we assessed the performance of viral size-fraction metagenomes (viromes) and total metagenomes in capturing viral diversity from hypersulfidic soils with neutral pH and sulfuric soils with pH <3.3. Viromes effectively enhanced the sequencing coverage of viral genomes in both soil types. Viomes of hypersulfidic soils outperformed total metagenomes by recovering a significantly higher number of viral operational taxonomic units (vOTUs). However, total metagenomes of sulfuric soils recovered ~4.5 times more vOTUs than viromes on average. Altogether, our findings suggest that the choice between viromes and total metagenomes for studying soil viruses should be carefully considered based on the specific environmental conditions.

2.
Environ Int ; 185: 108511, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382404

RESUMO

Fungal plant pathogens threaten crop production and sustainable agricultural development. However, the environmental factors driving their diversity and nationwide biogeographic model remain elusive, impacting our capacity to predict their changes under future climate scenarios. Here, we analyzed potential fungal plant pathogens from 563 samples collected from 57 agricultural fields across China. Over 28.0% of fungal taxa in the phyllosphere were identified as potential plant pathogens, compared to 22.3% in the rhizosphere. Dominant fungal plant pathogen groups were Cladosporium (in the phyllosphere) and Fusarium (in the rhizosphere), with higher diversity observed in the phyllosphere than in rhizosphere soil. Deterministic processes played an important role in shaping the potential fungal plant pathogen community assembly in both habitats. Mean annual precipitation and temperature were the most important factor influencing phyllosphere fungal plant pathogen richness. Significantly negative relationships were found between fungal pathogen diversity and sorghum yield. Notably, compared to the rhizosphere, the phyllosphere fungal plant pathogen diversity played a more crucial role in sorghum yield. Together, our work provides novel insights into the factors governing the spatial patterns of fungal plant pathogens in the crop microbiome, and highlights the potential significance of aboveground phyllosphere fungal plant pathogens in crop productivity.


Assuntos
Microbiota , Sorghum , Microbiologia do Solo , Agricultura , Solo , Grão Comestível
3.
Sci Total Environ ; 947: 174594, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38992349

RESUMO

During the recent times, environmental antibiotic resistance genes (ARGs) and their potential transfer to other bacterial hosts of pathogenic importance are of serious concern. However, the dissemination strategies of such ARGs are largely unknown. We tested that saprotrophic soil fungi differentially enriched antibiotic resistant bacteria (ARBs) and subsequently contributed in spatial distribution of selective ARGs. Wafergen qPCR analysis of 295 different ARGs was conducted for manure treated pre-sterilized soil incubated or not with selected bacterial-fungal consortia. The qPCR assay detected unique ARGs specifically found in the mycosphere of ascomycetous and basidiomycetous fungi. Both fungi exerted potentially different selection pressures on ARBs, resulting in different patterns of ARGs dissemination (to distant places) along their respective growing fungal highways. The relative abundance of mobile genetic elements (MGEs) was significantly decreased along fungal highways compared to the respective inoculation points. Moreover, the decrease in MGEs and ARGs (along fungal highways) was more prominent over time which depicts the continuous selection pressure of growing fungi on ARBs for enrichment of particular ARGs in mycosphere. Such data also indicate the potential role of saprotrophic soil fungi to facilitate horizontal gene transfer within mycospheric environmental settings. Our study, therefore, advocates to emphasize the future investigations for such (bacteria-fungal) interactive microbial consortia for potential (spatial) dissemination of resistance determinants which may ultimately increase the exposure risks of ARGs.


Assuntos
Fungos , Microbiologia do Solo , Fungos/fisiologia , Bactérias/efeitos dos fármacos , Solo/química , Resistência Microbiana a Medicamentos/genética , Transferência Genética Horizontal
4.
Sci Total Environ ; 921: 171227, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402820

RESUMO

Understanding the assembly mechanisms of microbial communities, particularly comammox Nitrospira, in agroecosystems is crucial for sustainable agriculture. However, the large-scale distribution and assembly processes of comammox Nitrospira in agricultural soils remain largely elusive. We investigated comammox Nitrospira abundance, community structure, and assembly processes in 16 paired upland peanuts and water-logged paddy soils in south China. Higher abundance, richness, and network complexity of comammox Nitrospira were observed in upland soils than in paddy soils, indicating a preference for upland soils over paddy soils among comammox Nitrospira taxa in agricultural environments. Clade A.2.1 and clade A.1 were the predominant comammox Nitrospira taxa in upland and paddy soils, respectively. Soil pH was the most crucial factor shaping comammox Nitrospira community structure. Stochastic processes were found to predominantly drive comammox Nitrospira community assembly in both upland and paddy soils, with deterministic processes playing a more important role in paddy soils than in upland soils. Overall, our findings demonstrate the higher stochasticity of comammox Nitrospira in upland soils than in the adjacent paddy soils, which may have implications for autotrophic nitrification in acidic agricultural soils.


Assuntos
Amônia , Solo , Solo/química , Oxirredução , Bactérias , Nitrificação , Filogenia , Archaea
5.
Sci Total Environ ; 943: 173831, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38866152

RESUMO

The plant microbiome plays a crucial role in facilitating plant growth through enhancing nutrient cycling, acquisition and transport, as well as alleviating stresses induced by nutrient limitations. Despite its significance, the relative importance of common agronomic practices, such as nitrogenous fertilizer, in shaping the plant microbiome across different cultivars remains unclear. This study investigated the dynamics of bacterial and fungal communities in leaf, root, rhizosphere, and bulk soil in response to nitrogenous fertilizer across ten sorghum varieties, using 16S rRNA and ITS gene amplicon sequencing, respectively. Our results revealed that nitrogen addition had a greater impact on sorghum-associated microbial communities compared to cultivar. Nitrogen addition significantly reduced bacterial diversity in all compartments except for the root endophytes. However, N addition significantly increased fungal diversity in both rhizosphere and bulk soils, while significantly reducing fungal diversity in the root endophytes. Furthermore, N addition significantly altered the community composition of bacteria and fungi in all four compartments, while cultivars only affected the community composition of root endosphere bacteria and fungi. Network analysis revealed that fertilization significantly reduced microbial network complexity and increased fungal-related network complexity. Collectively, this study provides empirical evidence that sorghum-associated microbiomes are predominantly shaped by nitrogenous fertilizer rather than by cultivars, suggesting that consistent application of nitrogenous fertilizer will ultimately alter plant-associated microbiomes regardless of cultivar selection.


Assuntos
Fertilizantes , Microbiota , Nitrogênio , Microbiologia do Solo , Sorghum , Sorghum/microbiologia , Nitrogênio/análise , Bactérias/classificação , Fungos/fisiologia , Rizosfera , RNA Ribossômico 16S , Raízes de Plantas/microbiologia
6.
mSystems ; 9(4): e0105523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38501864

RESUMO

Plant-associated diazotrophs strongly relate to plant nitrogen (N) supply and growth. However, our knowledge of diazotrophic community assembly and microbial N metabolism in plant microbiomes is largely limited. Here we examined the assembly and temporal dynamics of diazotrophic communities across multiple compartments (soils, epiphytic and endophytic niches of root and leaf, and grain) of three cereal crops (maize, wheat, and barley) and identified the potential N-cycling pathways in phylloplane microbiomes. Our results demonstrated that the microbial species pool, influenced by site-specific environmental factors (e.g., edaphic factors), had a stronger effect than host selection (i.e., plant species and developmental stage) in shaping diazotrophic communities across the soil-plant continuum. Crop diazotrophic communities were dominated by a few taxa (~0.7% of diazotrophic phylotypes) which were mainly affiliated with Methylobacterium, Azospirillum, Bradyrhizobium, and Rhizobium. Furthermore, eight dominant taxa belonging to Azospirillum and Methylobacterium were identified as keystone diazotrophic taxa for three crops and were potentially associated with microbial network stability and crop yields. Metagenomic binning recovered 58 metagenome-assembled genomes (MAGs) from the phylloplane, and the majority of them were identified as novel species (37 MAGs) and harbored genes potentially related to multiple N metabolism processes (e.g., nitrate reduction). Notably, for the first time, a high-quality MAG harboring genes involved in the complete denitrification process was recovered in the phylloplane and showed high identity to Pseudomonas mendocina. Overall, these findings significantly expand our understanding of ecological drivers of crop diazotrophs and provide new insights into the potential microbial N metabolism in the phyllosphere.IMPORTANCEPlants harbor diverse nitrogen-fixing microorganisms (i.e., diazotrophic communities) in both belowground and aboveground tissues, which play a vital role in plant nitrogen supply and growth promotion. Understanding the assembly and temporal dynamics of crop diazotrophic communities is a prerequisite for harnessing them to promote plant growth. In this study, we show that the site-specific microbial species pool largely shapes the structure of diazotrophic communities in the leaves and roots of three cereal crops. We further identify keystone diazotrophic taxa in crop microbiomes and characterize potential microbial N metabolism pathways in the phyllosphere, which provides essential information for developing microbiome-based tools in future sustainable agricultural production.


Assuntos
Microbiota , Microbiota/genética , Agricultura , Solo/química , Nitrogênio/análise , Produtos Agrícolas/metabolismo , Desenvolvimento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA