Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(17): 8934-8956, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607832

RESUMO

An engineered SOX17 variant with point mutations within its DNA binding domain termed SOX17FNV is a more potent pluripotency inducer than SOX2, yet the underlying mechanism remains unclear. Although wild-type SOX17 was incapable of inducing pluripotency, SOX17FNV outperformed SOX2 in mouse and human pluripotency reprogramming. In embryonic stem cells, SOX17FNV could replace SOX2 to maintain pluripotency despite considerable sequence differences and upregulated genes expressed in cleavage-stage embryos. Mechanistically, SOX17FNV co-bound OCT4 more cooperatively than SOX2 in the context of the canonical SoxOct DNA element. SOX2, SOX17, and SOX17FNV were all able to bind nucleosome core particles in vitro, which is a prerequisite for pioneer transcription factors. Experiments using purified proteins and in cellular contexts showed that SOX17 variants phase-separated more efficiently than SOX2, suggesting an enhanced ability to self-organise. Systematic deletion analyses showed that the N-terminus of SOX17FNV was dispensable for its reprogramming activity. However, the C-terminus encodes essential domains indicating multivalent interactions that drive transactivation and reprogramming. We defined a minimal SOX17FNV (miniSOX) that can support reprogramming with high activity, reducing the payload of reprogramming cassettes. This study uncovers the mechanisms behind SOX17FNV-induced pluripotency and establishes engineered SOX factors as powerful cell engineering tools.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Animais , Fatores de Transcrição/metabolismo , Células-Tronco Embrionárias/metabolismo , DNA/metabolismo , Mutação Puntual , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Diferenciação Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo
2.
Nucleic Acids Res ; 51(3): 1120-1138, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36631980

RESUMO

Oct4 is essential to maintain pluripotency and has a pivotal role in establishing the germline. Its DNA-binding POU domain was recently found to bind motifs with methylated CpG elements normally associated with epigenetic silencing. However, the mode of binding and the consequences of this capability has remained unclear. Here, we show that Oct4 binds to a compact palindromic DNA element with a methylated CpG core (CpGpal) in alternative states of pluripotency and during cellular reprogramming towards induced pluripotent stem cells (iPSCs). During cellular reprogramming, typical Oct4 bound enhancers are uniformly demethylated, with the prominent exception of the CpGpal sites where DNA methylation is often maintained. We demonstrate that Oct4 cooperatively binds the CpGpal element as a homodimer, which contrasts with the ectoderm-expressed POU factor Brn2. Indeed, binding to CpGpal is Oct4-specific as other POU factors expressed in somatic cells avoid this element. Binding assays combined with structural analyses and molecular dynamic simulations show that dimeric Oct4-binding to CpGpal is driven by the POU-homeodomain whilst the POU-specific domain is detached from DNA. Collectively, we report that Oct4 exerts parts of its regulatory function in the context of methylated DNA through a DNA recognition mechanism that solely relies on its homeodomain.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Fator 3 de Transcrição de Octâmero , Diferenciação Celular/genética , DNA/metabolismo , Metilação de DNA , Epigênese Genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Humanos , Animais , Camundongos
3.
Cell Death Discov ; 9(1): 245, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452056

RESUMO

Somatic cell reprogramming and oncogenic transformation share surprisingly similar features, yet transformed cells are resistant to reprogramming. Epigenetic barriers must block transformed cells from reprogramming, but the nature of those barriers is unclear. In this study, we generated a systematic panel of transformed mouse embryonic fibroblasts (MEFs) using oncogenic transgenes and discovered transformed cell lines compatible with reprogramming when transfected with Oct4/Sox2/Klf4/Myc. By comparing the reprogramming-capable and incapable transformed lines we identified multiple stages of failure in the reprogramming process. Some transformed lines failed at an early stage, whilst other lines seemed to progress through a conventional reprogramming process. Finally, we show that MEK inhibition overcomes one critical reprogramming barrier by indirectly suppressing a hyperacetylated active epigenetic state. This study reveals that diverse epigenetic barriers underly resistance to reprogramming of transformed cells.

4.
Sci Adv ; 9(34): eadh2501, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37611093

RESUMO

Advanced strategies to interconvert cell types provide promising avenues to model cellular pathologies and to develop therapies for neurological disorders. Yet, methods to directly transdifferentiate somatic cells into multipotent induced neural stem cells (iNSCs) are slow and inefficient, and it is unclear whether cells pass through a pluripotent state with full epigenetic reset. We report iNSC reprogramming from embryonic and aged mouse fibroblasts as well as from human blood using an engineered Sox17 (eSox17FNV). eSox17FNV efficiently drives iNSC reprogramming while Sox2 or Sox17 fail. eSox17FNV acquires the capacity to bind different protein partners on regulatory DNA to scan the genome more efficiently and has a more potent transactivation domain than Sox2. Lineage tracing and time-resolved transcriptomics show that emerging iNSCs do not transit through a pluripotent state. Our work distinguishes lineage from pluripotency reprogramming with the potential to generate more authentic cell models for aging-associated neurodegenerative diseases.


Assuntos
Células-Tronco Neurais , Humanos , Animais , Camundongos , Envelhecimento , Epigenômica , Perfilação da Expressão Gênica , Proteínas HMGB , Fatores de Transcrição SOXF/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA