Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 154(6): 1356-69, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24034255

RESUMO

Shape is an indicator of cell health. But how is the information in shape decoded? We hypothesize that decoding occurs by modulation of signaling through changes in plasma membrane curvature. Using analytical approaches and numerical simulations, we studied how elongation of cell shape affects plasma membrane signaling. Mathematical analyses reveal transient accumulation of activated receptors at regions of higher curvature with increasing cell eccentricity. This distribution of activated receptors is periodic, following the Mathieu function, and it arises from local imbalance between reaction and diffusion of soluble ligands and receptors in the plane of the membrane. Numerical simulations show that transient microdomains of activated receptors amplify signals to downstream protein kinases. For growth factor receptor pathways, increasing cell eccentricity elevates the levels of activated cytoplasmic Src and nuclear MAPK1,2. These predictions were experimentally validated by changing cellular eccentricity, showing that shape is a locus of retrievable information storage in cells.


Assuntos
Membrana Celular/metabolismo , Forma Celular , Modelos Biológicos , Transdução de Sinais , Animais , Células COS , Membrana Celular/química , Chlorocebus aethiops , Humanos , Ratos
2.
BMC Genomics ; 20(1): 225, 2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890156

RESUMO

BACKGROUND: Large-scale genetic screening using CRISPR-Cas9 technology has emerged as a powerful approach to uncover and validate gene functions. The ability to control the timing of genetic perturbation during CRISPR screens will facilitate precise dissection of dynamic and complex biological processes. Here, we report the optimization of a drug-inducible CRISPR-Cas9 system that allows high-throughput gene interrogation with a temporal control. RESULTS: We designed multiple drug-inducible sgRNA expression vectors and measured their activities using an EGFP gene disruption assay in 11 human and mouse cell lines. The optimal design allows for a tight and inducible control of gene knockout in vitro, and in vivo during a seven-week-long experiment following hematopoietic reconstitution in mice. We next performed parallel genome-wide loss-of-function screens using the inducible and constitutive CRISPR-Cas9 systems. In proliferation-based dropout screens, these two approaches have similar performance in discriminating essential and nonessential genes. In a more challenging phenotypic assay that requires cytokine stimulation and cell staining, we observed similar sensitivity of the constitutive and drug-induced screening approaches in detecting known hits. Importantly, we demonstrate minimal leakiness of our inducible CRISPR screening platforms in the absence of chemical inducers in large-scale settings. CONCLUSIONS: In this study, we have developed a drug-inducible CRISPR-Cas9 system that shows high cleavage efficiency upon induction but low background activity. Using this system, we have achieved inducible gene disruption in a wide range of cell types both in vitro and in vivo. For the first time, we present a systematic side-by-side comparison of constitutive and drug-inducible CRISPR-Cas9 platforms in large-scale functional screens. We demonstrate the tightness and efficiency of our drug-inducible CRISPR-Cas9 system in genome-wide pooled screening. Our design increases the versatility of CRISPR-based genetic screening and represents a significant upgrade on existing functional genomics toolbox.


Assuntos
Sistemas CRISPR-Cas , Carcinoma de Células Renais/genética , Receptores ErbB/antagonistas & inibidores , Marcação de Genes/métodos , Testes Genéticos/métodos , Neoplasias Renais/genética , Inibidores de Proteínas Quinases/farmacologia , Animais , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Proliferação de Células , Células Cultivadas , Receptores ErbB/genética , Genoma , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Camundongos
3.
Sci Rep ; 11(1): 2879, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536571

RESUMO

Alzheimer's disease (AD) is a common neurodegenerative disease with poor prognosis. New options for drug discovery targets are needed. We developed an imaging based arrayed CRISPR method to interrogate the human genome for modulation of in vitro correlates of AD features, and used this to assess 1525 human genes related to tau aggregation, autophagy and mitochondria. This work revealed (I) a network of tau aggregation modulators including the NF-κB pathway and inflammatory signaling, (II) a correlation between mitochondrial morphology, respiratory function and transcriptomics, (III) machine learning predicted novel roles of genes and pathways in autophagic processes and (IV) individual gene function inferences and interactions among biological processes via multi-feature clustering. These studies provide a platform to interrogate underexplored aspects of AD biology and offer several specific hypotheses for future drug discovery efforts.


Assuntos
Doença de Alzheimer/genética , Autofagia/genética , Modelos Genéticos , Agregação Patológica de Proteínas/genética , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Encéfalo/patologia , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Engenharia Genética , Humanos , Aprendizado de Máquina , Mitocôndrias/genética , Mitocôndrias/patologia , Neurônios , Agregação Patológica de Proteínas/patologia , Transdução de Sinais/genética
4.
Front Big Data ; 2: 25, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33693348

RESUMO

Most small molecule drugs interact with unintended, often unknown, biological targets and these off-target interactions may lead to both preclinical and clinical toxic events. Undesired off-target interactions are often not detected using current drug discovery assays, such as experimental polypharmacological screens. Thus, improvement in the early identification of off-target interactions represents an opportunity to reduce safety-related attrition rates during preclinical and clinical development. In order to better identify potential off-target interactions that could be linked to predictable safety issues, a novel computational approach to predict safety-relevant interactions currently not covered was designed and evaluated. These analyses, termed Off-Target Safety Assessment (OTSA), cover more than 7,000 targets (~35% of the proteome) and > 2,46,704 preclinical and clinical alerts (as of January 20, 2019). The approach described herein exploits a highly curated training set of >1 million compounds (tracking >20 million compound-structure activity relationship/SAR data points) with known in vitro activities derived from patents, journals, and publicly available databases. This computational process was used to predict both the primary and secondary pharmacological activities for a selection of 857 diverse small molecule drugs for which extensive secondary pharmacology data are readily available (456 discontinued and 401 FDA approved). The OTSA process predicted a total of 7,990 interactions for these 857 molecules. Of these, 3,923 and 4,067 possible high-scoring interactions were predicted for the discontinued and approved drugs, respectively, translating to an average of 9.3 interactions per drug. The OTSA process correctly identified the known pharmacological targets for >70% of these drugs, but also predicted a significant number of off-targets that may provide additional insight into observed in vivo effects. About 51.5% (2,025) and 22% (900) of these predicted high-scoring interactions have not previously been reported for the discontinued and approved drugs, respectively, and these may have a potential for repurposing efforts. Moreover, for both drug categories, higher promiscuity was observed for compounds with a MW range of 300 to 500, TPSA of ~200, and clogP ≥7. This computation also revealed significantly lower promiscuity (i.e., number of confirmed off-targets) for compounds with MW > 700 and MW<200 for both categories. In addition, 15 internal small molecules with known off-target interactions were evaluated. For these compounds, the OTSA framework not only captured about 56.8% of in vitro confirmed off-target interactions, but also identified the right pharmacological targets for 14 compounds as one of the top scoring targets. In conclusion, the OTSA process demonstrates good predictive performance characteristics and represents an additional tool with utility during the lead optimization stage of the drug discovery process. Additionally, the computed physiochemical properties such as clogP (i.e., lipophilicity), molecular weight, pKa and logS (i.e., solubility) were found to be statistically different between the approved and discontinued drugs, but the internal compounds were close to the approved drugs space in most part.

5.
CRISPR J ; 2: 230-245, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31436504

RESUMO

Genome-wide CRISPR-Cas9 essentiality screening represents a powerful approach to identify genetic vulnerabilities in cancer cells. Here, we applied this technology and designed a strategy to identify target genes that are synthetic lethal (SL) with von Hippel-Lindau (VHL) tumor suppressor gene. Inactivation of VHL has been frequently found in clear cell renal cell carcinoma. Its SL partners serve as potential drug targets for the development of targeted cancer therapies. We performed parallel genome-wide CRISPR screens in two pairs of isogenic clear cell renal cell carcinoma cell lines that differ only in the VHL status. Comparative analyses of screening results not only confirmed a well-known role for mTOR signaling in renal carcinoma, but also identified DNA damage response and selenocysteine biosynthesis pathways as novel SL targets in VHL-inactivated cancer cells. Follow-up studies provided cellular and mechanistic insights into SL interactions of these pathway genes with the VHL gene. Our CRISPR and RNA-seq datasets provide a rich resource for future investigation of the function of the VHL tumor suppressor protein. Our work demonstrates the efficiency of CRISPR-based synthetic lethality screening in human isogenic cell pairs. Similar strategies could be employed to unveil SL partners with other oncogenic drivers.


Assuntos
Reparo do DNA , Selenocisteína/biossíntese , Transdução de Sinais , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Sistemas CRISPR-Cas , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Edição de Genes , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Análise de Sequência de RNA , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Doença de von Hippel-Lindau/genética , Doença de von Hippel-Lindau/metabolismo
6.
Sci Rep ; 7: 43934, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262745

RESUMO

Using a gelatin microbial transglutaminase (gelatin-mTG) cell culture platform tuned to exhibit stiffness spanning that of healthy and diseased glomeruli, we demonstrate that kidney podocytes show marked stiffness sensitivity. Podocyte-specific markers that are critical in the formation of the renal filtration barrier are found to be regulated in association with stiffness-mediated cellular behaviors. While podocytes typically de-differentiate in culture and show diminished physiological function in nephropathies characterized by altered tissue stiffness, we show that gelatin-mTG substrates with Young's modulus near that of healthy glomeruli elicit a pro-differentiation and maturation response in podocytes better than substrates either softer or stiffer. The pro-differentiation phenotype is characterized by upregulation of gene and protein expression associated with podocyte function, which is observed for podocytes cultured on gelatin-mTG gels of physiological stiffness independent of extracellular matrix coating type and density. Signaling pathways involved in stiffness-mediated podocyte behaviors are identified, revealing the interdependence of podocyte mechanotransduction and maintenance of their physiological function. This study also highlights the utility of the gelatin-mTG platform as an in vitro system with tunable stiffness over a range relevant for recapitulating mechanical properties of soft tissues, suggesting its potential impact on a wide range of research in cellular biophysics.


Assuntos
Materiais Biomiméticos/metabolismo , Diferenciação Celular , Gelatina/metabolismo , Mecanotransdução Celular , Podócitos/efeitos dos fármacos , Podócitos/fisiologia , Transglutaminases/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Humanos
7.
Nat Commun ; 8(1): 2145, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247198

RESUMO

The shape of a cell within tissues can represent the history of chemical and physical signals that it encounters, but can information from cell shape regulate cellular phenotype independently? Using optimal control theory to constrain reaction-diffusion schemes that are dependent on different surface-to-volume relationships, we find that information from cell shape can be resolved from mechanical signals. We used microfabricated 3-D biomimetic chips to validate predictions that shape-sensing occurs in a tension-independent manner through integrin ß3 signaling pathway in human kidney podocytes and smooth muscle cells. Differential proteomics and functional ablation assays indicate that integrin ß3 is critical in transduction of shape signals through ezrin-radixin-moesin (ERM) family. We used experimentally determined diffusion coefficients and experimentally validated simulations to show that shape sensing is an emergent cellular property enabled by multiple molecular characteristics of integrin ß3. We conclude that 3-D cell shape information, transduced through tension-independent mechanisms, can regulate phenotype.


Assuntos
Forma Celular/fisiologia , Mecanotransdução Celular/fisiologia , Miócitos de Músculo Liso/fisiologia , Podócitos/fisiologia , Estresse Mecânico , Animais , Animais Recém-Nascidos , Células COS , Forma Celular/genética , Células Cultivadas , Chlorocebus aethiops , Proteínas do Citoesqueleto/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Humanos , Integrina beta3/genética , Integrina beta3/metabolismo , Mecanotransdução Celular/genética , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Podócitos/citologia , Podócitos/metabolismo , Proteômica/métodos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA