Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(9): 4291-4301, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38385161

RESUMO

Photochemical ozone (O3) formation in the atmospheric boundary layer occurs at both the surface and elevated altitudes. Therefore, the O3 formation sensitivity is needed to be evaluated at different altitudes before formulating an effective O3 pollution prevention and control strategy. Herein, we explore the vertical evolution of O3 formation sensitivity via synchronous observations of the vertical profiles of O3 and proxies for its precursors, formaldehyde (HCHO) and nitrogen dioxide (NO2), using multi-axis differential optical absorption spectroscopy (MAX-DOAS) in urban areas of the Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), and Pearl River Delta (PRD) regions in China. The sensitivity thresholds indicated by the HCHO/NO2 ratio (FNR) varied with altitude. The VOC-limited regime dominated at the ground level, whereas the contribution of the NOx-limited regime increased with altitude, particularly on heavily polluted days. The NOx-limited and transition regimes played more important roles throughout the entire boundary layer than at the surface. The feasibility of extreme NOx reduction to mitigate the extent of the O3 pollution was evaluated using the FNR-O3 curve. Based on the surface sensitivity, the critical NOx reduction percentage for the transition from a VOC-limited to a NOx-limited regime is 45-72%, which will decrease to 27-61% when vertical evolution is considered. With the combined effects of clean air action and carbon neutrality, O3 pollution in the YRD and PRD regions will transition to the NOx-limited regime before 2030 and be mitigated with further NOx reduction.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Ozônio/análise , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental/métodos , China
2.
J Environ Sci (China) ; 124: 1-10, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182119

RESUMO

Recently, air pollution especially fine particulate matters (PM2.5) and ozone (O3) has become a severe issue in China. In this study, we first characterized the temporal trends of PM2.5 and O3 for Beijing, Guangzhou, Shanghai, and Wuhan respectively during 2018-2020. The annual mean PM2.5 has decreased by 7.82%-33.92%, while O3 concentration showed insignificant variations by -6.77%-4.65% during 2018-2020. The generalized additive models (GAMs) were implemented to quantify the contribution of individual meteorological factors and their gas precursors on PM2.5 and O3. On a short-term perspective, GAMs modeling shows that the daily variability of PM2.5 concentration is largely related to the variation of precursor gases (R = 0.67-0.90), while meteorological conditions mainly affect the daily variability of O3 concentration (R = 0.65-0.80) during 2018-2020. The impact of COVID-19 lockdown on PM2.5 and O3 concentrations were also quantified by using GAMs. During the 2020 lockdown, PM2.5 decreased significantly for these megacities, yet the ozone concentration showed an increasing trend compared to 2019. The GAMs analysis indicated that the contribution of precursor gases to PM2.5 and O3 changes is 3-8 times higher than that of meteorological factors. In general, GAMs modeling on air quality is helpful to the understanding and control of PM2.5 and O3 pollution in China.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Cidades , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Ozônio/análise , Material Particulado/análise
3.
J Environ Sci (China) ; 123: 350-366, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36521998

RESUMO

Atmospheric oxidizing capacity (AOC) is an essential driving force of troposphere chemistry and self-cleaning, but the definition of AOC and its quantitative representation remain uncertain. Driven by national demand for air pollution control in recent years, Chinese scholars have carried out studies on theories of atmospheric chemistry and have made considerable progress in AOC research. This paper will give a brief review of these developments. First, AOC indexes were established that represent apparent atmospheric oxidizing ability (AOIe) and potential atmospheric oxidizing ability (AOIp) based on aspects of macrothermodynamics and microdynamics, respectively. A closed study refined the quantitative contributions of heterogeneous chemistry to AOC in Beijing, and these AOC methods were further applied in Beijing-Tianjin-Hebei and key areas across the country. In addition, the detection of ground or vertical profiles for atmospheric OH·, HO2·, NO3· radicals and reservoir molecules can now be obtained with domestic instruments in diverse environments. Moreover, laboratory smoke chamber simulations revealed heterogeneous processes involving reactions of O3 and NO2, which are typical oxidants in the surface/interface atmosphere, and the evolutionary and budgetary implications of atmospheric oxidants reacting under multispecies, multiphase and multi-interface conditions were obtained. Finally, based on the GRAPES-CUACE adjoint model improved by Chinese scholars, simulations of key substances affecting atmospheric oxidation and secondary organic and inorganic aerosol formation have been optimized. Normalized numerical simulations of AOIe and AOIp were performed, and regional coordination of AOC was adjusted. An optimized plan for controlling O3 and PM2.5 was analyzed by scenario simulation.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluição do Ar/análise , Atmosfera/química , Aerossóis/análise , Oxirredução , Oxidantes , Poluentes Atmosféricos/análise , Material Particulado/análise , China , Monitoramento Ambiental
4.
J Environ Manage ; 319: 115721, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35863306

RESUMO

This study investigated the wintertime vertical distributions and source areas of aerosols, NO2, and HCHO in a coastal city of Dongying from December 2020 to March 2021, using ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) and a potential source contribution function (PSCF) model, respectively. Moreover, the chemical production sensitivity of O3 at different height layers was analyzed using HCHO/NO2 ratios. The results revealed that the wintertime averaged highest concentrations of aerosol (1.25 km-1), NO2 (14.81 ppb), and HCHO (2.32 ppb) were mainly distributed at the surface layer, 100-200 m layer, and 200-300 m layer, respectively. Regarding the diurnal cycles, high concentrations of aerosol (>1.4 km-1) and NO2 (>16.0 ppb) usually appeared in the early morning and late afternoon, while high concentrations of HCHO (>2.5 ppb) usually occurred during 12:00-15:00. The PSCF model revealed that the wintertime aerosol mainly originated from Shandong, northern Jiangsu, Korea, and the northwestern Mongolian Plateau. Below 200 m, NO2 was mainly from western Shandong, whereas above 600 m, it was mainly from northern Shandong and the Beijing-Tianjin-Hebei (BTH) region. The corresponding sources for HCHO were central and southern Shandong (below 200 m) and northern Shandong, northern Jiangsu, and southeastern BTH (above 600 m). In addition, the chemical production sensitivity of O3 below 100 m was observed only in the VOC-limited regime. The percentages of O3 production under the NOx-limited, NOx-VOC-limited, and VOC-limited regimes were 10.75% (31.18%), 4.30% (19.35%), and 84.95% (49.47%) at the 500-600 m (900-1000 m) layer. This study has guiding significance for the coordinated control of PM2.5 and O3, and can assist in the implementation of regional joint prevention and control strategies for air pollutants.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental/métodos , Dióxido de Nitrogênio/análise , Ozônio/análise , Compostos Orgânicos Voláteis/análise
5.
J Environ Sci (China) ; 122: 92-104, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35717094

RESUMO

Formaldehyde (HCHO) and glyoxal (CHOCHO) are important oxidization intermediates of most volatile organic compounds (VOCs), but their vertical evolution in urban areas is not well understood. Vertical profiles of HCHO, CHOCHO, and nitrogen dioxide (NO2) were retrieved from ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations in Hefei, China. HCHO and CHOCHO vertical profiles prefer to occur at higher altitudes compared to NO2, which might be caused by the photochemistry-oxidation of longer-lived VOCs at higher altitudes. Monthly means of HCHO concentrations were higher in summer, while enhanced amounts of NO2 were mainly observed in winter. CHOCHO exhibited a hump-like seasonal variation, with higher monthly-averaged values not only occurred in warm months (July-August) but also in cold months (November-December). Peak values mainly occurred during noon for HCHO but emerged in the morning for CHOCHO and NO2, suggesting that HCHO is stronger link to photochemistry than CHOCHO. We further use the glyoxal to formaldehyde ratio (GFR) to investigate the VOC sources at different altitudes. The lowest GFR value is almost found in the altitude from 0.2 to 0.4 km, and then rises rapidly as the altitude increases. The GFR results indicate that the largest contributor of the precursor VOC is biogenic VOCs at lower altitudes, while at higher altitudes is anthropogenic VOCs. Our findings provide a lot more insight into VOC sources at vertical direction, but more verification is recommended to be done in the future.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Formaldeído/análise , Glioxal/análise , Dióxido de Nitrogênio/análise , Análise Espectral , Compostos Orgânicos Voláteis/análise
6.
J Environ Sci (China) ; 111: 75-83, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34949375

RESUMO

New particle formation (NPF) events are an increasingly interesting topic in air quality and climate science. In this study, the particle number size distributions, and the frequency of NPF events over Hefei were investigated from November 2018 to February 2019. The proportions of the nucleation mode, Aitken mode, and accumulation mode were 24.59%, 53.10%, and 22.30%, respectively, which indicates the presence of abundant ultrafine particles in Hefei. Forty-six NPF events occurred during the observation days, accounting for 41.82% of the entire observation period. Moreover, the favorable meteorological conditions, potential precursor gases, and PM2.5 range of the NPF events were analyzed. Compared to non-NPF days, the NPF events preferentially occurred on days with lower relative humidity, higher wind speeds, and higher temperatures. When the PM2.5 was 15-20, 70-80, and 105-115 µg/m3, the frequency of the NPF events was higher. Nucleation mode particles were positively related to atmospheric oxidation indicated by ozone when PM2.5 ranged from 15 to 20 µg/m3, and related to gaseous precursors like SO2 and NO2 when PM2.5 was located at 70-80 and 105-115 µg/m3. On pollution days, NPF events did not directly contribute to the increase in the PM2.5 in the daytime, however, NPF events would occur during the night and the growth of particulate matter contributes to the nighttime PM2.5 contents. This could lead to pollution that lasted into the next day. These findings are significant to the improvement of our understanding of the effects of aerosols on air quality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , Rios , Estações do Ano
7.
Opt Express ; 29(4): 4958-4977, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33726041

RESUMO

High-resolution solar absorption spectra, observed by ground-based Fourier Transform Infrared spectroscopy (FTIR), are used to retrieve vertical profiles and partial or total column concentrations of many trace gases. In this study, we present the tropospheric CO2 columns retrieved by mid-infrared solar spectra over Hefei, China. To reduce the influence of stratospheric CO2 cross-dependencies on tropospheric CO2, an a posteriori optimization method based on a simple matrix multiplication is used to correct the tropospheric CO2 profiles and columns. The corrected tropospheric CO2 time series show an obvious annual increase and seasonal variation. The tropospheric CO2 annual increase rate is 2.71 ± 0.36 ppm yr-1, with the annual peak value in January, and CO2 decreases to a minimum in August. Further, the corrected tropospheric CO2 from GEOS-Chem simulations are in good agreement with the coincident FTIR data, with a correlation coefficient between GEOS-chem model and FTS of 0.89. The annual increase rate of XCO2 observed from near-infrared solar absorption spectra is in good agreement with the tropospheric CO2 but the annual seasonal amplitude of XCO2 is only about 1/3 of dry-air averaged mole fractions (DMF) of tropospheric CO2. This is mostly attributed to the seasonal variation of CO2 being mainly dominated by sources near the surface.

8.
Environ Sci Technol ; 55(17): 11538-11548, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34488351

RESUMO

Sulfur dioxide (SO2) measured by satellites is widely used to estimate anthropogenic emissions. The Sentinel-5 Precursor (S-5P) operational SO2 product is overestimated compared to the ground-based multiaxis differential optical absorption spectroscopy (MAX-DOAS) measurements in China and shows an opposite variation to the surface measurements, which limits the application of TROPOspheric monitoring instrument (TROPOMI) products in emissions research. Radiometric calibration, a priori profiles, and fitting windows might cause the overestimation of S-5P operational SO2 product. Here, we improve the optimal-estimation-based algorithm through several calibration methods. The improved retrieval agrees reasonably well with the ground-based measurements (R > 0.70, bias <13.7%) and has smaller biases (-28.9%) with surface measurements over China and India. It revealed that the SO2 column in March 2020 decreased by 51.6% compared to March 2019 due to the lockdown for curbing the spread of the COVID-19 pandemic, and there was a decrease of 50% during the lockdown than those after the lockdown, similar to the surface measurement trend, while S-5P operational SO2 product showed an unrealistic increase of 19%. In India, the improved retrieval identified obvious "hot spots" and observed a 30% decrease of SO2 columns during the lockdown.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Pandemias , SARS-CoV-2
9.
Ecotoxicol Environ Saf ; 220: 112329, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34020282

RESUMO

Studying the characteristics of new particle formation (NPF) is conducive to exploring the impact of atmospheric particulate matter on the climate, environment, and human health. The particle number size distributions (5.6-560 nm) of aerosols were measured using a fast mobility particle sizer (FMPS) from 1 to 11 May 2019. The clean atmosphere was one of the basic conditions for the occurrence of this continuous new particle formation events. It started between 9:00 and 12:00, and it mainly ended after 20:00. The growth rate (GR) and condensation sink (CS) values in Hefei were 2.98 ± 0.97 nm·h-1 and (3.0 ± 0.4) × 10-2 s-1, respectively. Back trajectory clustering analysis revealed that the mass concentration of the air masses from the southeastern part of Henan Province and the southern part of Anhui Province surrounding the study area were relatively high. The analysis results of the potential source contribution function (PSCF) and the concentration weighted trajectory (CWT) methods show that in addition to local pollution, the long-distance transport of pollutants in the Yangtze River Delta (YRD) greatly contributed to the accumulation modal particulate concentration in Hefei. Moreover, the population affected by PM2.5 during the observation period reached 8.19 × 104, accounting for 1.08% to the total population in Hefei. The premature death cases associated with PM2.5 reached 8.35 × 102. This study is helpful to understand the main influencing factors of consecutive NPF events and the health risks of fine particles.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Material Particulado/análise , China , Férias e Feriados
10.
J Environ Sci (China) ; 103: 119-134, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33743894

RESUMO

Information on the vertical distribution of air pollutants is essential for understanding their spatiotemporal evolution underlying urban atmospheric environment. This paper presents the SO2 profiles based on ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements from March 2018 to February 2019 in Hefei, East China. SO2 decrease rapidly with increasing heights in the warm season, while lifted layers were observed in the cold season, indicating accumulation or long-range transport of SO2 in different seasons might occur at different heights. The diurnal variations of SO2 were roughly consistent for all four seasons, exhibiting the minimum at noon and higher values in the morning and late afternoon. Lifted layers of SO2 were observed in the morning for fall and winter, implying the accumulation or transport of SO2 in the morning mainly occurred at the top of the boundary layer. The bivariate polar plots showed that weighted SO2 concentrations in the lower altitude were weakly dependent on wind, but in the middle and upper altitudes, higher weighted SO2 concentrations were observed under conditions of middle-high wind speed. Concentration weighted trajectory (CWT) analysis suggested that potential sources of SO2 in spring and summer were local and transported mainly occurred in the lower altitude from southern and eastern areas; while in fall and winter, SO2 concentrations were deeply affected by long-range transport from northwestern and northern polluted regions in the middle and upper altitudes. Our findings provide new insight into the impacts of regional transport at different heights in the boundary layer on SO2 pollution.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Poluentes Atmosféricos/análise , China , Estações do Ano , Análise Espectral , Dióxido de Enxofre/análise
11.
J Environ Sci (China) ; 105: 44-55, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34130838

RESUMO

Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations were operated from 02 to 21 December 2018 in Leshan, southwest China, to measure HONO, NO2 and aerosol extinction vertical distributions, and these were the first MAX-DOAS measurement results in Sichuan Basin. During the measurement period, characteristic ranges for surface concentration were found to be 0.26-4.58 km-1 and averaged at 0.93 km-1 for aerosol extinction, 0.49 to 35.2 ppb and averaged at 4.57 ppb for NO2 and 0.03 to 7.38 ppb and averaged at 1.05 ppb for HONO. Moreover, vertical profiles of aerosol, NO2 and HONO were retrieved from MAX-DOAS measurements using the Heidelberg Profile (HEIPRO) algorithm. By analysing the vertical gradients of pollutants and meteorological information, we found that aerosol and HONO are strongly localised, while NO2 is mainly transmitted from the north direction (city center direction). Nitrogen oxides such as HONO and NO2 are important for the production of hydroxyl radical (OH) and oxidative capacity in the troposphere. In this study, the averaged value of OH production rate from HONO is about 0.63 ppb/hr and maximum value of ratio between OH production from HONO and from (HONO+O3) is > 93% before12:00 in Leshan. In addition, combustion emission contributes to 26% for the source of HONO in Leshan, and we found that more NO2 being converted to HONO under the conditions with high aerosol extinction coefficient and high relative humidity is also a dominant factor for the secondary produce of HONO.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , China , Cidades , Compostos de Nitrogênio , Dióxido de Nitrogênio/análise , Ácido Nitroso/análise
12.
Opt Express ; 28(6): 8041-8055, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32225437

RESUMO

In this study, the characterization of Hydrogen Chloride (HCl) seasonal variations and inter-annual linear trend are presented for the first time over the polluted region at Hefei (117°10'E, 31°54'N), China. The time series of HCl were retrieved by the mid-infrared (MIR) solar spectra recorded by the ground-based high-resolution Fourier transform infrared spectroscopy (FTIR) between July, 2015 and April, 2019. The magnitude of HCl reaches a peak in January (2.70 ± 0.16) × 1015 molecules*cm-2 and a minimum in September (2.27 ± 0.09) × 1015 molecules*cm-2. The four-year time series of HCl total column show a negative linear trend of (-1.83 ± 0.13) %. The FTIR data are compared with GEOS-Chem data in order to evaluate the performance of the GEOS-Chem model to simulate HCl. In general, total column FTIR data and GEOS-Chem model data are in a good agreement with a correlation coefficient of 0.82. GEOS-Chem model data present a good agreement with FTIR data in seasonal variation and inter-annul trend. The maximum differences occur in January and April with mean differences of 4%-6%. We also present HCl time series observed by 6 NDACC stations (Bremen, Toronto, Rikubetsu, Izana, Reunion.maido, Lauder) in low-middle-latitude sites of the northern and southern hemispheres and Hefei stations in order to investigate the seasonal and annual trends of HCl in low-middle-latitude sites. The HCl total column at the northern hemisphere stations reached the maximum in the late winter or early spring and the minimum in the early winter or late autumn. In general, the seasonal variations of HCl over Hefei is similar to that in other northern hemisphere mid-latitude FTIR stations.

13.
Opt Express ; 27(16): A1225-A1240, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510516

RESUMO

We present the trend and seasonal variability of stratospheric NO2 column for the first time over the polluted atmosphere at Hefei, China, retrieved using Fourier transform infrared spectroscopy (FTIR) between 2015 and 2018. The FTIR observed stratospheric NO2 columns over Hefei show a peak in June and reach a minimum in January. The mean stratospheric NO2 column concentration in June is (3.49 ± 0.25) × 1015 molecules*cm-2, and is 39.20% ± 8.95% higher than that in January with a mean value of (2.51 ± 0.21) × 1015 molecules*cm-2. We find a negative trend of (-0.34 ± 0.05) %/yr in the FTIR observations of stratospheric NO2 column. The FTIR data are compared to the satellite OMI observations to assess the new data set quality and also applied to evaluate the GEOS-Chem model simulations. We find in general the OMI observations and GEOS-Chem model results are in good agreement with the coincident FTIR data, and they all show similar seasonal cycles with strong correlation coefficients of 0.84-0.86. The annual average OMI minus FTIR difference is (1.48 ± 5.33) × 1014 molecules*cm-2 (4.82% ± 17.37%), and average GEOS-Chem minus FTIR difference is (2.36 ± 2.33) × 1014 molecules*cm -2 (7.66% ± 7.49%). Their maximum differences occur in April and May with mean differences of 12-16%. We also found negative trends in the stratospheric NO2 column over Hefei for 2015-2018 with both OMI observations (-0.91 ± 0.09%/yr) and GEOS-Chem model results (-0.31 ± 0.05%/yr), demonstrating some consistency among them.

14.
J Environ Sci (China) ; 79: 81-90, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30784467

RESUMO

Beijing-Tianjin-Hebei area is suffering from atmospheric pollution from a long time. The understanding of the air pollution mechanism is of great importance for officials to design strategies for the environmental governance. Mixing layer height (MLH) is a key factor influencing the diffusion of air pollutants. It plays an important role on the evolution of heavy pollution events. Light detection and ranging (lidar), is an effective remote-sensing tool, which can retrieve high spatial and temporal evolution process within mixing layer (ML), especially the variation of MLH. There are many methods to retrieve MLH, but each method has its own applicable limitations. The Mie-lidar data in Beijing was firstly used to compare three different algorithms which are widely used under different pollution levels. We find that the multi-layer structure near surface may cause errors in the detection of mixing layer. The MLH retrieved based on image edge detection was better than another two methods especially under heavy polluted episode. Then we applied this method to investigate the evolution of the mixing layer height during a pollution episode in December 2016. MLH at Gucheng county showed the positive correlation with the concentration of particulate matters during the start of this pollution episode. The elevated pollution level in Gucheng was not associated with MLH's decrease, and the significantly increased particulate matters raised the boundary layer, which trapped the pollutants near the surface.


Assuntos
Poluição do Ar/análise , Algoritmos , Monitoramento Ambiental/métodos , Tecnologia de Sensoriamento Remoto , Movimentos do Ar , Altitude , China , Monitoramento Ambiental/instrumentação
15.
J Environ Sci (China) ; 40: 10-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26969540

RESUMO

In fall-winter, 2007-2013, visibility and light scattering coefficients (bsp) were measured along with PM2.5 mass concentrations and chemical compositions at a background site in the Pearl River Delta (PRD) region. The daily average visibility increased significantly (p<0.01) at a rate of 1.1 km/year, yet its median stabilized at ~13 km. No haze days occurred when the 24-hr mean PM2.5 mass concentration was below 75 µg/m(3). By multiple linear regression on the chemical budget of particle scattering coefficient (bsp), we obtained site-specific mass scattering efficiency (MSE) values of 6.5 ± 0.2, 2.6 ± 0.3, 2.4 ± 0.7 and 7.3 ± 1.2m(2)/g, respectively, for organic matter (OM), ammonium sulfate (AS), ammonium nitrate (AN) and sea salt (SS). The reconstructed light extinction coefficient (bext) based on the Interagency Monitoring of Protected Visual Environments (IMPROVE) algorithm with our site-specific MSE revealed that OM, AS, AN, SS and light-absorbing carbon (LAC) on average contributed 45.9% ± 1.6%, 25.6% ± 1.2%, 12.0% ± 0.7%, 11.2% ± 0.9% and 5.4% ± 0.3% to light extinction, respectively. Averaged bext displayed a significant reduction rate of 14.1/Mm·year (p<0.05); this rate would be 82% higher if it were not counteracted by increasing relative humidity (RH) and hygroscopic growth factor (f(RH)) at rates of 2.5% and 0.16/year(-1) (p<0.01), respectively, during the fall-winter, 2007-2013. This growth of RH and f(RH) partly offsets the positive effects of lowered AS in improving visibility, and aggravated the negative effects of increasing AN to impair visibility.


Assuntos
Poluição do Ar , Algoritmos , Sulfato de Amônio/análise , China , Monitoramento Ambiental , Umidade , Luz , Modelos Lineares , Nitratos/análise , Material Particulado/análise , Material Particulado/química , Estações do Ano
16.
Sci Total Environ ; 869: 161759, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36702288

RESUMO

With increasing geopolitical conflicts and climate change, the effects of war on the atmosphere remain unclear, especially the recent large-scale war between Russia and Ukraine. Here, we assess how war affects human emission activities by observing atmospheric nitrogen dioxide (NO2) using high-resolution satellite spectroscopy. Spatial and temporal responses of atmospheric composition to armed conflict are characterized. Significant decreases in NO2 concentrations of 10.7-27.3 % occurred in most Ukrainian cities at the beginning of the war, in contrast to dramatic increases in NO2 concentrations in Russian cities outside the northern border. Anomalous changes in NO2 were also found in transportation hubs. By excluding the effect of meteorology, the machine learning model indicates that war-induced changes in anthropogenic emissions may account for ∼40 % of the reduction in NO2 pollution for major cities such as Kyiv. Our study demonstrates that satellites can provide a unique perspective on the atmospheric consequences of humanitarian disasters.

17.
Sci Total Environ ; 859(Pt 1): 159997, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36368395

RESUMO

Anthropogenic volatile organic compounds (VOCs) are serious pollutants in the atmosphere because of their toxicity and as precursors of secondary organic aerosols and ozone pollution. Although in-situ measurements provide accurate information on VOCs, their spatial coverage is limited and insufficient. In this study, we provide a global perspective for identifying anthropogenic VOC emission sources through the ratio of glyoxal to formaldehyde (RGF) based on satellite observations. We assessed typical cities and polluted areas in the mid latitudes and found that some Asian cities had higher anthropogenic VOC emissions than cities in Europe and America. For heavily polluted areas, such as the Yangtze River Delta (YRD), the areas dominated by anthropogenic VOCs accounted for 23 % of the total study areas. During the COVID-19 pandemic, a significant decline in RGF values was observed in the YRD and western United States, corresponding to a reduction in anthropogenic VOC emissions. Furthermore, developing countries appeared to have higher anthropogenic VOC emissions than developed countries. These observations could contribute to optimising industrial structures and setting stricter pollution standards to reduce anthropogenic VOCs in developing countries.


Assuntos
Poluentes Atmosféricos , COVID-19 , Ozônio , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Glioxal , Pandemias , Monitoramento Ambiental , COVID-19/epidemiologia , Aerossóis e Gotículas Respiratórios , Ozônio/análise , Formaldeído , China
18.
Environ Int ; 170: 107600, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36335897

RESUMO

Formaldehyde (HCHO) is a toxic and hazardous air pollutant that widely exists in atmosphere. Insufficient spatial and temporal coverage of surface HCHO measurements is limiting studies on surface HCHO-related air quality management and health risk assessment. This study develops a method to derive global ground-level HCHO concentrations from satellite-based tropospheric HCHO columns using TM5-simulated surface-to-column conversion factor with coarse spatial resolution. The method improves the factor more representative in finer grids by constraining TM5-simulated vertical profile shapes with satellite HCHO columns. The surface HCHO concentrations derived by the Ozone Mapping and Profiler Suite (OMPS) show good correlation with in situ HCHO measurements (R = 0.59) from the U.S. Environmental Protection Agency surface network. We investigated how surface HCHO relates to urbanization and population aggregation over seven regions with high HCHO pollution. The results show urban HCHO increases as a power function with population size in China, India, and West Asia. HCHO concentrations in rural aeras also present strong log-log relationship with population aggregation in China, India, the United States, and Europe. Moreover, OMPS-derived ground-level HCHO concentrations were used to estimate global cancer burden caused by long-term outdoor HCHO exposure. The results show that up to 418188 more people worldwide will develop this cancer during the human life cycle. The global cancer burden is mainly from the South-East Asia region (33.11 %) and the Western Pacific region (22.95 %). This cancer occurrence in India and China is ranked 1st and 2nd in the world due to the large population size and serious HCHO pollution. Besides, global surface HCHO concentrations and cancer burden derived from the Environmental Trace Gases Monitoring Instrument which is China's first hyperspectral space-based spectrometer are found similar patterns with that from OMPS. Our results provide new insight into the impact of population urbanization on HCHO pollution and global outdoor HCHO-caused health risks.


Assuntos
Neoplasias , Urbanização , Estados Unidos , Humanos , Índia , United States Environmental Protection Agency , China
19.
Sci Total Environ ; 827: 154045, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217050

RESUMO

The vertical distributions of formaldehyde (HCHO) and nitrogen dioxide (NO2) and their indicative roles in ozone (O3) sensitivity are important for designing O3 mitigation strategies. Using hyperspectral remote sensing observations, tropospheric vertical profiles of HCHO, NO2, and aerosol extinction were investigated in Guangzhou, China from July to September 2019. On both O3 non-exceedance and polluted days, the HCHO and aerosol vertical profiles exhibited similar Gaussian shapes, but the NO2 profile exhibited an exponential decreasing shape. HCHO and aerosol were especially sensitive to O3 pollution, with higher values generally occurring at approximately noon and late afternoon at higher altitudes. We attempted to study the diurnal evolution of O3 sensitivity at different altitudes based on the HCHO to NO2 ratio (FNR) vertical profile. The FNR thresholds marking the transition regime (2.5 < FNR < 4.0) were derived from the relationship between the increase in O3 (∆O3) and FNR. Our results showed that O3 sensitivity tends to be VOC-limited both at lower (below approximately 0.4 km) and higher (above approximately 1.8 km) altitudes throughout the daytime. In the middle altitudes, the photochemical formation of O3 was mainly in the transition/NOx-limited regime in the morning and afternoon but in the VOC-limited regime at noontime. The relationship between TROPOMI column FNR and near-surface O3 sensitivity was further investigated. Compared with the MAX-DOAS near-surface FNR, slightly higher values of column FNR would increase the number of days classified as transition regimes, which was mainly caused by the inhomogeneous vertical distribution of HCHO and NO2 in the lower troposphere. This study provides an improved understanding of vertical variability and diurnal evolution of O3 formation sensitivity.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental/métodos , Dióxido de Nitrogênio/análise , Ozônio/análise , Processos Fotoquímicos , Compostos Orgânicos Voláteis/análise
20.
Light Sci Appl ; 11(1): 28, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110522

RESUMO

In response to the COVID-19 pandemic, governments worldwide imposed lockdown measures in early 2020, resulting in notable reductions in air pollutant emissions. The changes in air quality during the pandemic have been investigated in numerous studies via satellite observations. Nevertheless, no relevant research has been gathered using Chinese satellite instruments, because the poor spectral quality makes it extremely difficult to retrieve data from the spectra of the Environmental Trace Gases Monitoring Instrument (EMI), the first Chinese satellite-based ultraviolet-visible spectrometer monitoring air pollutants. However, through a series of remote sensing algorithm optimizations from spectral calibration to retrieval, we successfully retrieved global gaseous pollutants, such as nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO), from EMI during the pandemic. The abrupt drop in NO2 successfully captured the time for each city when effective measures were implemented to prevent the spread of the pandemic, for example, in January 2020 in Chinese cities, February in Seoul, and March in Tokyo and various cities across Europe and America. Furthermore, significant decreases in HCHO in Wuhan, Shanghai, Guangzhou, and Seoul indicated that the majority of volatile organic compounds (VOCs) emissions were anthropogenic. Contrastingly, the lack of evident reduction in Beijing and New Delhi suggested dominant natural sources of VOCs. By comparing the relative variation of NO2 to gross domestic product (GDP), we found that the COVID-19 pandemic had more influence on the secondary industry in China, while on the primary and tertiary industries in Korea and the countries across Europe and America.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA