RESUMO
BACKGROUND: Astragaloside IV (AST-IV), as an effective active ingredient of Astragalus membranaceus (Fisch.) Bunge. It has been found that AST-IV inhibits the replication of dengue virus, hepatitis B virus, adenovirus, and coxsackievirus B3. Enterovirus 71 (EV71) serves as the main pathogen in severe hand-foot-mouth disease (HFMD), but there are no specific drugs available. In this study, we focus on investigating whether AST-IV can inhibit EV71 replication and explore the potential underlying mechanisms. METHODS: The GES-1 or RD cells were infected with EV71, treated with AST-IV, or co-treated with both EV71 and AST-IV. The EV71 structural protein VP1 levels, the viral titers in the supernatant were measured using western blot and 50% tissue culture infective dose (TCID50), respectively. Network pharmacology was used to predict possible pathways and targets for AST-IV to inhibit EV71 replication. Additionally, ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) was used to investigate the potential targeted metabolites of AST-IV. Associations between metabolites and apparent indicators were performed via Spearman's algorithm. RESULTS: This study illustrated that AST-IV effectively inhibited EV71 replication. Network pharmacology suggested that AST-IV inhibits EV71 replication by targeting PI3K-AKT. Metabolomics results showed that AST-IV achieved these effects by elevating the levels of hypoxanthine, 2-ketobutyric acid, adenine, nicotinic acid mononucleotide, prostaglandin H2, 6-hydroxy-1 H-indole-3- acetamide, oxypurinol, while reducing the levels of PC (14:0/15:0). Furthermore, AST-IV also mitigated EV71-induced oxidative stress by reducing the levels of MDA, ROS, while increasing the activity of T-AOC, CAT, GSH-Px. The inhibition of EV71 replication was also observed when using the ROS inhibitor N-Acetylcysteine (NAC). Additionally, AST-IV exhibited the ability to activate the PI3K-AKT signaling pathway and suppress EV71-induced apoptosis. CONCLUSION: This study suggests that AST-IV may activate the cAMP and the antioxidant stress response by targeting eight key metabolites, including hypoxanthine, 2-ketobutyric acid, adenine, nicotinic acid mononucleotide, prostaglandin H2, 6-Hydroxy-1 H-indole-3-acetamide, oxypurinol and PC (14:0/15:0). This activation can further stimulate the PI3K-AKT signaling to inhibit EV71-induced apoptosis and EV71 replication.
Assuntos
Enterovirus Humano A , Metabolômica , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Saponinas , Transdução de Sinais , Triterpenos , Replicação Viral , Replicação Viral/efeitos dos fármacos , Saponinas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Enterovirus Humano A/efeitos dos fármacosRESUMO
Most organophosphorus pesticide (OP) sensors reported in the literature rely on the inhibition effect of OPs on the activity of acetylcholinesterase (AChE), which suffer from the drawbacks of lack of selective recognition of OPs, high cost, and poor stability. Herein, we proposed a novel chemiluminescence (CL) strategy for the direct detection of glyphosate (an organophosphorus herbicide) with high sensitivity and specificity, which is based on the porous hydroxy zirconium oxide nanozyme (ZrOX-OH) obtained via a facile alkali solution treatment of UIO-66. ZrOX-OH displayed excellent phosphatase-like activity, which could catalyze the dephosphorylation of 3-(2'-spiroadamantyl)-4-methoxy-4-(3'-phosphoryloxyphenyl)-1,2-dioxetane (AMPPD) to generate strong CL. The experimental results showed that the phosphatase-like activity of ZrOX-OH is closely related to the content of hydroxyl groups on their surface. Interestingly, ZrOX-OH with phosphatase-like properties exhibited a unique response to glyphosate because of the consumption of the surface hydroxyl group by the unique carboxyl group of glyphosates and was thus employed to develop a CL sensor for direct and selective detection of glyphosate without using bio-enzymes. The recovery for glyphosate detection of cabbage juice ranged from 96.8 to 103.0%. We believe that the as-proposed CL sensor based on ZrOX-OH with phosphatase-like properties supplies a simpler and more highly selective approach for OP assay and provides a new method for the development of CL sensors for the direct analysis of OPs in real samples.
Assuntos
Acetilcolinesterase , Praguicidas , Acetilcolinesterase/análise , Praguicidas/análise , Compostos Organofosforados/análise , Luminescência , Monoéster Fosfórico Hidrolases , GlifosatoRESUMO
The metal-organic frameworks (MOFs) nanozyme-mediated paper-based analytical devices (PADs) have shown great potential in portable visual determination of phenolic compounds in the environment. However, most MOF nanozymes suffer from poor dispersibility and block-like structure, which often prompts deposition and results in diminished enzymatic activity, severely hindering their environmental applications. Here, we proposed colorimetric PADs for the visual detection of dichlorophen (Dcp) based on its significant inhibitory effect on the two-dimensional (2D) MOF nanozyme activity. Specifically, we synthesized a 2D Cu TCPP (Fe) (defined as 2D-CTF) MOF nanozyme exhibiting excellent dispersibility and remarkable peroxidase-like (POD-like) activity, which could catalyze the oxidation and subsequent color change of 3,3',5,5'-tetramethylbenzidine even under neutral conditions. Notably, the POD-like activity of 2D-CTF demonstrated a unique response to Dcp because of the occupation of Fe-N4 active sites on the 2D-CTF. This property enables the use of 2D-CTF as a highly efficient catalyst to develop colorimetric PADs for naked-eye and portable detection of Dcp. We believe that the proposed colorimetric PADs offer an efficient method for Dcp assay and open fresh avenues for the advancement of colorimetric sensors for analyzing of phenolic toxic substances in real samples.
Assuntos
Técnicas Biossensoriais , Diclorofeno , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Técnicas Biossensoriais/métodos , Peroxidases/química , Peroxidase , Colorimetria/métodos , Fenóis , Peróxido de Hidrogênio/químicaRESUMO
BACKGROUND: Alcoholic liver disease (ALD) is a significant contributor to liver damage. However, the clinical options for the treatment of ALD are limited. Astragaloside IV (AST-IV) is a saponin isolated from Astragalus membranaceus (AM). This study aimed to explore the underlying mechanisms of action of AST-IV in ALD by integrating metabolomics and network pharmacology. METHODS: Sprague-Dawley (SD) rats were used to establish a rat model of ALD. AST-IV and polyene phosphatidyl choline (PPC; a positive control drug) were administered to rats with ALD for 4 weeks. We measured the body weight, liver index, ALT, AST, TC, TG, inflammatory markers (IL-1ß, IL-6, and TNF-α), and oxidative stress markers (SOD, MDA) and used H&E and ORO staining to evaluate the hepatoprotective effect of both AST-IV and PPC on ALD. Subsequently, we performed untargeted metabolomics to predict the influence of AST-IV on lipid metabolism in rats with ALD. We then used a network pharmacology approach to identify the core targets through which AST-IV corrected lipid metabolism disorders and validated these targets through molecular docking, qRT-PCR and western blot analyses. Finally, we calculated the relationships between ALD-related biochemical markers, differential liver metabolites, and core targets using Spearman's correlation analysis. RESULTS: AST-IV improved pathological damage and reduced lipid accumulation in the hepatocytes of rats with ALD. Furthermore, AST-IV inhibited oxidative stress and inflammatory responses in rats with ALD. The metabolomic results showed that AST-IV corrected hepatic lipid metabolism disorders by targeting linoleic acid, necrosis, sphingolipid, and glycerophospholipid metabolism. The Network pharmacology analysis revealed that the core targets of AST-IV exerting the above effects were p-RIPK3, p-MLKL, CYP1A2, CYP2C19, PPARα, PCSK9. Spearman's correlation analysis showed a strong correlation between ALD-related serum biochemical indices, core targets, and liver differential metabolites. CONCLUSION: AST-IV corrects the metabolic disorders of linoleic acid, sphingolipid, and glycerophospholipid, and alleviates necrosis in rats with ALD through the core targets p-RIPK3, p-MLKL, CYP1A2, CYP2C19, PPARα, and PCSK9. This study is the first to reveal the mechanism of ALD protection through AST-IV from the perspective of metabolomics and network pharmacology. Therefore, a novel target has been identified to exert protection against ALD. This study provides a reference for ALD treatment.