RESUMO
Auxin is an important class of plant hormones that play an important role in plant growth development, biotic stress response, and viruses often suppress host plant auxin levels to promote infection. However, previous research on auxin-mediated disease resistance has focused mainly on signaling pathway, and the molecular mechanisms of how pathogenic proteins manipulate the biosynthetic pathway of auxin remain poorly understood. TCP is a class of plant-specific transcription factors, of which TCP17 is a member that binds to the promoter of YUCCAs, a key rate-limiting enzyme for auxin synthesis, and promotes the expression of YUCCAs, which is involved in auxin synthesis in plants. In this study, we reported that Tomato spotted wilt virus (TSWV) infection suppressed the expression of YUCCAs through its interaction with TCP17. Further studies revealed that the NSs protein encoded by TSWV disrupts the dimerization of TCP17, thereby inhibit its transcriptional activation ability and reducing the auxin content in plants. Consequently, this interference inhibits the auxin response signal and promotes the TSWV infection. Transgenic plants overexpressing TCP17 exhibit resistance against TSWV infection, whereas plants knocking out TCP17 were more susceptible to TSWV infection. Additionally, proteins encoded by other RNA viruses (BSMV, RSV and TBSV) can also interact with TCP17 and interfere with its dimerization. Notably, overexpression of TCP17 enhanced resistance against BSMV. This suggests that TCP17 plays a crucial role in plant defense against different types of plant viruses that use viral proteins to target this key component of auxin synthesis and promote infection.
Assuntos
Ácidos Indolacéticos , Doenças das Plantas , Fatores de Transcrição , Ácidos Indolacéticos/metabolismo , Doenças das Plantas/virologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Tospovirus , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Resistência à Doença , Interações Hospedeiro-Patógeno , Plantas Geneticamente Modificadas , Nicotiana/virologia , Nicotiana/metabolismo , Nicotiana/genética , Arabidopsis/virologia , Arabidopsis/metabolismo , Arabidopsis/genéticaRESUMO
Anaplastic lymphoma kinase (ALK) rearrangement is a well-known driver oncogene detected in approximately 5% of non-small cell lung cancer. However, ALK rearrangement is much less frequent in other solid tumors outside the lungs, such as colorectal cancer (CRC); thus, the optimal management of CRC with ALK rearrangements has yet to be established. In this report, we describe 2 cases of ALK-positive CRC, both of which benefited from ALK tyrosine kinase inhibitor (ALK-TKI) therapy. Case 1 was a postoperative patient with poorly differentiated colon adenocarcinoma, who was diagnosed with metastatic relapse shortly after surgery. Both fluorouracil, leucovorin, and oxaliplatin (FOLFOX) and bevacizumab combined with 5-fluorouracil, l-leucovorin, and irinotecan (FOLFIRI) proved ineffective against the disease. The patient was then treated with ensartinib, as the CAD-ALK fusion gene was detected by genomic analysis. The patient was initially treated with ensartinib monotherapy for 9 months, then with ensartinib combined with local radiotherapy and fruquintinib for another 4 months for isolated hilar hepatic lymph node metastasis. The patient experienced disease progression with an acquired ALK G1202R resistance mutation that responded well to lorlatinib. Case 2 involved a 72-year-old man with advanced colon cancer (pT4bN2aM1b, stage IV) harboring an EML4-ALK fusion. The patient underwent resection of the right colon tumor due to intestinal obstruction, but the disease continued to progress after 12 courses of FOLFIRI and bevacizumab chemotherapy. However, the patient responded remarkably well to alectinib. Our report emphasizes the importance of gene detection in the treatment of malignant tumors, and the significance of ALK mutations in CRC.
RESUMO
Novel inorganic sonosensitizers with excellent reactive oxygen species (ROS) generation activity and multifunctionality are appealing in sonodynamic therapy (SDT). Herein, amorphous bismuth (Bi)-doped CoFe-layered double hydroxide (a-CoBiFe-LDH) nanosheets are proposed via crystalline-to-amorphous phase transformation strategy as a new type of bifunctional sonosensitizer, which allows ultrasound (US) to trigger ROS generation for magnetic resonance imaging (MRI)-guided SDT. Importantly, a-CoBiFe-LDH nanosheets exhibit much higher ROS generation activity (≈6.9 times) than that of traditional TiO2 sonosensitizer under US irradiation, which can be attributed to the acid etching-induced narrow band gap, high electron (e-)/hole (h+) separation efficiency and inhibited e-/h+ recombination. In addition, the paramagnetic properties of Fe ion endow a-CoBiFe-LDH with excellent MRI contrast ability, making it a promising contrast agent for T2-weighted MRI. After modification with polyethylene glycol, a-CoBiFe-LDH nanosheets can function as a high-efficiency sonosensitizer to activate p53, MAPK, oxidative phosphorylation, and apoptosis-related signaling pathways, ultimately inducing cell apoptosis in vitro and tumor ablation in vivo under US irradiation, which shows great potential for clinical cancer treatment.
RESUMO
Photodynamic therapy (PDT) is demonstrated to be effective in inducing antitumor immune responses for tumor metastasis treatment. However, tumor hypoxia, inferior tissue penetration of light, and low singlet oxygen (1O2) quantum yield significantly hamper the efficacy of PDT, thus weakening its immune function. Moreover, PDT-mediated neutrophil extracellular traps (NETs) formation can further reduce the therapeutic effectiveness. Herein, the use of defect-rich CoMo-layered double hydroxide (DR-CoMo-LDH) nanosheets as a carrier to load a typical peptidyl arginine deiminase 4 inhibitor, i.e., YW4-03, to construct a multifunctional nanoagent (403@DR-LDH) for PDT/immunotherapy, is reported. Specifically, 403@DR-LDH inherits excellent 1O2 generation activity under 1550 nm laser irradiation and improves the half-life of YW4-03. Meanwhile, 403@DR-LDH plus 1550 nm laser irradiation can stimulate immunogenic cell death to promote the maturation of dendric cells and activation/infiltration of T cells and significantly downregulate H3cit protein expression to inhibit NETs formation, synergistically promoting the antitumor metastasis effect. Taken together, 403@DR-LDH can kill cancer cells and inhibit tumor growth/metastasis under 1550 nm laser irradiation. Single-cell analysis indicates that 403@DR-LDH can regulate the ratio of immune cells and immune-related proteins to improve the tumor immune microenvironment, showing strong efficacy to inhibit the tumor growth, metastasis, and recurrence.
RESUMO
Persistent luminescence (PersL) materials exhibit thermal-favored optical behavior, enabling their unique applications in security night vision signage, in vivo bioimaging, and optical anti-counterfeiting. Therefore, developing efficient and color-tunable PersL materials is significantly crucial in promoting advanced practical use. In this study, hexagonal Zr4+ -doped CsCdCl3 perovskite is synthesized via a hydrothermal reaction with a tunable photoluminescent (PL) behavior through heterovalent substitution. Moreover, the incorporation of Zr4+ ions result in an extra blue emission band, originating from the enhanced excitonic recombination in D3d octahedrons. Furthermore, the afterglow performances of the samples are dramatically improved, along with the noticeable temperature-dependent PersL as well as the thermo-luminescence with tunable color output. Detailed analysis reveals that the unique temperature-dependent PersL and thermo-luminescence color change are attributed to the presence of multiple luminous centers and abundant traps. Overall, this work facilitates the development of optical intelligence platforms and novel thermal distribution probes with the as-developed halides perovskite for its superior explored PersL characteristic.
RESUMO
Great efforts have been devoted to the development of novel and multifunctional wound dressing materials to meet the different needs of wound healing. Herein, we covalently grafted quaternary ammonium groups (QAGs) containing 12-carbon straight-chain alkanes to the dextran polymer skeleton. We then oxidized the resulting product into oxidized quaternized dextran (OQD). The obtained OQD polymer is rich in antibacterial QAGs and aldehyde groups. It can react with glycol chitosan (GC) via the Schiff-base reaction to form a multifunctional GC@OQD hydrogel with good self-healing behavior, hemostasis, injectability, inherent superior antibacterial activity, biocompatibility, and excellent promotion of healing of methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds. The biosafe and nontoxic GC@OQD hydrogel with a three-dimensional porous network structure possesses an excellent swelling rate and water retention capacity. It can be used for hemostasis and treating irregular wounds. The designed GC@OQD hydrogel with inherent antibacterial activity possesses good antibacterial efficacy on both S. aureus (Gram-positive bacteria) and Escherichia coli (Gram-negative bacteria), as well as MRSA bacteria, with antibacterial activity greater than 99%. It can be used for the treatment of wounds infected by MRSA and significantly promotes the healing of wounds. Thus, the multifunctional antibacterial GC@OQD hydrogel has the potential to be applied in clinical practice as a wound dressing.
Assuntos
Antibacterianos , Quitosana , Escherichia coli , Hidrogéis , Staphylococcus aureus Resistente à Meticilina , Cicatrização , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Animais , Quitosana/química , Quitosana/farmacologia , Dextranos/química , Dextranos/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Camundongos , Polissacarídeos/química , Polissacarídeos/farmacologiaRESUMO
The aggregation behavior of ubiquitous dissolved black carbon (DBC) largely affects the fate and transport of its own contaminants and the attached contaminants. However, the photoaging processes and resulting effects on its colloidal stability remain yet unknown. Herein, dissolved biochars (DBioCs) were extracted from common wheat straw biochar as a proxy for an anthropogenic DBC. The influences of UV radiation on their aggregation kinetics were systematically investigated under various water chemistries (pH, electrolytes, and protein). The environmental stability of the DBioCs before and after radiation was further verified in two natural water samples. Hamaker constants of pristine and photoaged DBioCs were derived according to Derjaguin-Landau-Verwey-Overbeek (DLVO) prediction, and its attenuation (3.19 ± 0.15 × 10-21 J to 1.55 ± 0.07 × 10-21 J after 7 days of radiation) was described with decay kinetic models. Pearson correlation analysis revealed that the surface properties and aggregation behaviors of DBioCs were significantly correlated with radiation time (p < 0.05), indicating its profound effects. Based on characterization and experimental results, we proposed a three-stage mechanism (contended by photodecarboxylation, photo-oxidation, and mineral exposure) that DBioCs might experience under UV radiation. These findings would provide an important reference for potential phototransformation processes and relevant behavioral changes that DBC may encounter.
Assuntos
Raios Ultravioleta , Água/química , Carvão Vegetal/química , Cinética , Poluentes Químicos da Água/químicaRESUMO
BACKGROUND: Osteocytes are critical mechanosensory cells in bone, and mechanically stimulated osteocytes produce exosomes that can induce osteogenesis. MicroRNAs (miRNAs) are important constituents of exosomes, and some miRNAs in osteocytes regulate osteogenic differentiation; previous studies have indicated that some differentially expressed miRNAs in mechanically strained osteocytes likely influence osteoblastic differentiation. Therefore, screening and selection of miRNAs that regulate osteogenic differentiation in exosomes of mechanically stimulated osteocytes are important. RESULTS: A mechanical tensile strain of 2500 µÎµ at 0.5 Hz 1 h per day for 3 days, elevated prostaglandin E2 (PGE2) and insulin-like growth factor-1 (IGF-1) levels and nitric oxide synthase (NOS) activity of MLO-Y4 osteocytes, and promoted osteogenic differentiation of MC3T3-E1 osteoblasts. Fourteen miRNAs differentially expressed only in MLO-Y4 osteocytes which were stimulated with mechanical tensile strain, were screened, and the miRNAs related to osteogenesis were identified. Four differentially expressed miRNAs (miR-1930-3p, miR-3110-5p, miR-3090-3p, and miR-3058-3p) were found only in mechanically strained osteocytes, and the four miRNAs, eight targeted mRNAs which were differentially expressed only in mechanically strained osteoblasts, were also identified. In addition, the mechanically strained osteocyte-derived exosomes promoted the osteoblastic differentiation of MC3T3-E1 cells in vitro, the exosomes were internalized by osteoblasts, and the up-regulated miR-3110-5p and miR-3058-3p in mechanically strained osteocytes, were both increased in the exosomes, which was verified via reverse transcription quantitative polymerase chain reaction (RT-qPCR). CONCLUSIONS: In osteocytes, a mechanical tensile strain of 2500 µÎµ at 0.5 Hz induced the fourteen differentially expressed miRNAs which probably were in exosomes of osteocytes and involved in osteogenesis. The mechanically strained osteocyte-derived exosomes which contained increased miR-3110-5p and miR-3058-3p (two of the 14 miRNAs), promoted osteoblastic differentiation.
Assuntos
Exossomos , MicroRNAs , Osteócitos , Osteogênese , Estresse Mecânico , Animais , Camundongos , Linhagem Celular , Exossomos/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteócitos/citologia , Osteócitos/metabolismo , Osteogênese/genéticaRESUMO
BACKGROUND: This study aimed to understand the clinical characteristics of pulmonary abscess caused by Streptococcus constellatus infection. METHODS: The clinical manifestations, laboratory examination, drug sensitivity, chest CT manifestations, and treatment and prognosis of patients with pulmonary abscess caused by Streptococcus constellatus infection were retrospectively collected and analyzed. RESULTS: A total of 9 cases of pulmonary abscess caused by Streptococcus constellatus infection were confirmed; one case was confirmed by traditional cultures, while metagenomic next-generation sequencing (mNGS) confirmed the other 8 cases. All of the 9 patients had different degrees of cough, sputum, fever, chest pain, and/or dyspnea, and the physical examination showed fast breathing, reduced respiratory sound, or moist rales on the affected side. In laboratory tests, 8 patients had elevated white blood cells and hypoproteinemia upon admission. Blood gas analysis showed an oxygenation index < 300. The antimicrobial susceptibility testing results in 1 patient with culture-confirmed pathogen diagnosis showed that Streptococcus constellatus was susceptible to ampicillin, penicillin G, cefotaxime, ceftriaxone, cefepime, meropenem, chloramphenicol, linezolid, levofloxacin, and vancomycin and resistant to tetracycline and clindamycin. Relevant antibiotic resistance genes were not detected by mNGS in the 8 patients with negative culture and positive mNGS results. A chest CT showed lung consolidation or cavity formation in 9 patients admitted to the hospital, and 5 patients had pleural effusion. 3 cases were admitted to the respiratory intensive care unit (RICU) and 6 cases were admitted to the general ward. There were 3 cases of nasal catheter oxygen inhalation, 1 case of mask oxygen inhalation, and 5 cases of non-invasive ventilator assisted ventilation. All patients received penicillin or respiratory quinolones anti-infection therapy, and 3 cases were treated with a thoracic closed drainage tube. All patients were discharged from the hospital after improvement, and the hospital stay was 15 - 23 days. CONCLUSIONS: Patients with pulmonary abscess caused by Streptococcus constellatus infection have an urgent condition and rapid progression. It is helpful to use mNGS combined with traditional culture as soon as possible to identify the pathogenic bacteria. Penicillin antibiotics should be the first choice for pulmonary abscess caused by a suspected Streptococcus constellatus infection. If a patient´s condition worsens during the treatment, especially for patients who have lesions involving the interlobar fissure or pleura, compressive atelectasis caused by pleural fluid formation or an increase in the amount of pleural effusion needs to be highly suspected.
Assuntos
Antibacterianos , Abscesso Pulmonar , Infecções Estreptocócicas , Streptococcus constellatus , Humanos , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/tratamento farmacológico , Abscesso Pulmonar/microbiologia , Abscesso Pulmonar/diagnóstico , Abscesso Pulmonar/tratamento farmacológico , Streptococcus constellatus/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Feminino , Estudos Retrospectivos , Antibacterianos/uso terapêutico , Idoso , Adulto , Testes de Sensibilidade Microbiana , Tomografia Computadorizada por Raios X , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
Sonodynamic therapy (SDT), a promising strategy for cancer treatment with the ability for deep tissue penetration, has received widespread attention in recent years. Sonosensitizers with intrinsic characteristics for tumor-specific curative effects, tumor microenvironment (TME) regulation and tumor diagnosis are in high demand. Herein, amorphous CoBiMn-layered double hydroxide (a-CoBiMn-LDH) nanoparticles are presented as multifunctional sonosensitizers to trigger reactive oxygen species (ROS) generation for ultrasound (US) imaging-guided SDT. Hydrothermal-synthesized CoBiMn-LDH nanoparticles are etched via a simple acid treatment to obtain a-CoBiMn-LDH nanoparticles with abundant defects. The a-CoBiMn-LDH nanoparticles give greater ROS generation upon US irradiation, reaching levels ~ 3.3 times and ~ 8.2 times those of the crystalline CoBiMn-LDH nanoparticles and commercial TiO2 sonosensitizer, respectively. This excellent US-triggered ROS generation performance can be attributed to the defect-induced narrow band gap and promoted electrons and holes (e-/h+) separation. More importantly, the presence of Mn4+ enables the a-CoBiMn-LDH nanoparticles to regulate the TME by decomposing H2O2 into O2 for hypoxia relief and US imaging, and consuming glutathione (GSH) for protection against ROS clearance. Biological mechanism analysis shows that a-CoBiMn-LDH nanoparticles modified with polyethylene glycol can serve as a multifunctional sonosensitizer to effectively kill cancer cells in vitro and eliminate tumors in vivo under US irradiation by activating p53, apoptosis, and oxidative phosphorylation-related signaling pathways.
Assuntos
Hidróxidos , Nanopartículas , Espécies Reativas de Oxigênio , Microambiente Tumoral , Terapia por Ultrassom , Microambiente Tumoral/efeitos dos fármacos , Animais , Espécies Reativas de Oxigênio/metabolismo , Humanos , Terapia por Ultrassom/métodos , Hidróxidos/química , Hidróxidos/farmacologia , Camundongos , Nanopartículas/química , Linhagem Celular Tumoral , Cobalto/química , Ultrassonografia/métodos , Camundongos Endogâmicos BALB C , Neoplasias/terapia , Neoplasias/diagnóstico por imagem , Apoptose/efeitos dos fármacos , Feminino , Camundongos NusRESUMO
The rapid proliferation of tumors is highly dependent on the nutrition supply of blood vessels. Cutting off the nutrient supply to tumors is an effective strategy for cancer treatment, known as starvation therapy. Although various hydrogel-based biomaterials have been developed for starvation therapy through glucose consumption or intravascular embolization, the limitations of single-mode starvation therapy hinder their therapeutic effects. Herein, we propose a dual-function nutrition deprivation strategy that can block the nutrients delivery through extravascular gelation shrinkage and inhibit neovascularization through angiogenesis inhibitors based on a novel NIR-responsive nanocomposite hydrogel. CuS nanodots-modified MgAl-LDH nanosheets loaded with angiogenesis inhibitor (sorafenib, SOR) are incorporated into the poly(n-isopropylacrylamide) (PNIPAAm) hydrogel by radical polymerization to obtain the composite hydrogel (SOR@LDH-CuS/P). The SOR@LDH-CuS/P hydrogel can deliver hydrophobic SOR with a NIR-responsive release behavior, which could decrease the tumor vascular density and accelerate cancer cells apoptosis. Moreover, the SOR@LDH-CuS/P hydrogel exhibits higher (3.5 times) compressive strength than that of the PNIPAAm, which could squeeze blood vessels through extravascular gelation shrinkage. In vitro and in vivo assays demonstrate that the interruption of nutrient supply by gelation shrinkage and the prevention of angiogenesis by SOR is a promising strategy to inhibit tumor growth for multimode starvation therapy.
Assuntos
Hidrogéis , Neoplasias , Humanos , Hidrogéis/química , Inibidores da Angiogênese/farmacologia , Angiogênese , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológicoRESUMO
BACKGROUND: Familial hypercholesterolemia (FH) is a prevalent hereditary disease that can cause aberrant cholesterol metabolism. In this study, we confirmed that c.415G > A in low-density lipoprotein receptor (LDLR), an FH-related gene, is a pathogenic variant in FH by in silico analysis and functional experiments. METHODS: The proband and his family were evaluated using the diagnostic criteria of the Dutch Lipid Clinic Network. Whole-exome and Sanger sequencing were used to explore and validate FH-related variants. In silico analyses were used to evaluate the pathogenicity of the candidate variant and its impact on protein stability. Molecular and biochemical methods were performed to examine the effects of the LDLR c.415G > A variant in vitro. RESULTS: Four of six participants had a diagnosis of FH. It was estimated that the LDLR c.415G > A variant in this family was likely pathogenic. Western blotting and qPCR suggested that LDLR c.415G > A does not affect protein expression. Functional studies showed that this variant may lead to dyslipidemia by impairing the binding and absorption of LDLR to low-density lipoprotein ( LDL). CONCLUSION: LDLR c.415G > A is a pathogenic variant in FH; it causes a significant reduction in LDLR's capacity to bind LDL, resulting in impaired LDL uptake. These findings expand the spectrum of variants associated with FH.
Assuntos
Hiperlipoproteinemia Tipo II , Humanos , Fenótipo , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Receptores de LDL/genética , Receptores de LDL/metabolismo , Lipoproteínas LDL/genética , Mutação , Pró-Proteína Convertase 9/genéticaRESUMO
BACKGROUND: Positive and negative likelihood ratios (PLR and NLR) are important metrics of accuracy for diagnostic devices with a binary output. However, the properties of Bayesian and frequentist interval estimators of PLR/NLR have not been extensively studied and compared. In this study, we explore the potential use of the Bayesian method for interval estimation of PLR/NLR, and, more broadly, for interval estimation of the ratio of two independent proportions. METHODS: We develop a Bayesian-based approach for interval estimation of PLR/NLR for use as a part of a diagnostic device performance evaluation. Our approach is applicable to a broader setting for interval estimation of any ratio of two independent proportions. We compare score and Bayesian interval estimators for the ratio of two proportions in terms of the coverage probability (CP) and expected interval width (EW) via extensive experiments and applications to two case studies. A supplementary experiment was also conducted to assess the performance of the proposed exact Bayesian method under different priors. RESULTS: Our experimental results show that the overall mean CP for Bayesian interval estimation is consistent with that for the score method (0.950 vs. 0.952), and the overall mean EW for Bayesian is shorter than that for score method (15.929 vs. 19.724). Application to two case studies showed that the intervals estimated using the Bayesian and frequentist approaches are very similar. DISCUSSION: Our numerical results indicate that the proposed Bayesian approach has a comparable CP performance with the score method while yielding higher precision (i.e. a shorter EW).
RESUMO
BACKGROUND: Myopia is a major health issue around the world. Myopia in children has increased significantly during the COVID-19 pandemic in China, but reports are scarce on the prevalence of myopia following the pandemic. This study collected vision screening data of school children in China for five consecutive years to observe the changes in myopia after the pandemic and compare the observed prevalence of myopia before and after the pandemic. METHODS: A school-based vision screening study used stratified samplings to collect the vision screening data in school children aged 6-13 from 45 primary schools in Hangzhou. Vision screening data including uncorrected visual acuity(UCVA) and spherical equivalent refraction(SER). Calculating the mean of SER and the prevalence of myopia and hyperopia from 2019 to 2023. RESULTS: A total of 79,068 screening results (158,136 eyes) were included in the analysis. A substantial myopic shift (approximately -0.30 diopters [D] on average) was found in 2020 and 2021 compared with 2019 in all age groups and a substantial myopic shift (approximately 0.4 D on average) was found in 2022 compared with 2021. A slight myopic shift (approximately -0.14 D on average) was found in 2023 compared with 2022. The prevalence of myopia in all age groups was the highest for five years in 2020 or 2021, which was 31.3% for 6-year-olds, 43.0% for 7-year-olds, and 53.7% for 8-year-olds. A positive change in the prevalence rate of myopia was found at 6 years old (0.59%, 0.12%, 0.36%, 0.25%, p < 0.001). The change in prevalence rate in myopia was shifted slightly in children aged 10-13 years. Children aged 8 to 13 years had a slight increase in myopia prevalence from 2022 to 2023. The prevalence of hyperopia was low and stable in all grade groups, ranging from 0.7% to 2.2% over five years. CONCLUSION: Myopia in children has increased rapidly during the COVID-19 pandemic. After the pandemic, the prevalence of myopia in children gradually decreased temporarily and then rebounded. Myopic shift was more apparent in younger children. Myopic shift in children may be related to the reduction of outdoor time, less light, and near work habits, and further research is needed.
Assuntos
COVID-19 , Miopia , Seleção Visual , Humanos , COVID-19/epidemiologia , Criança , Miopia/epidemiologia , China/epidemiologia , Masculino , Adolescente , Feminino , Prevalência , Instituições Acadêmicas , PandemiasRESUMO
AIMS: We aimed to develop an elaborative nomogram that predicts cancer-specific survival (CSS) in American and Chinese octogenarians treated with radical resection for CRC. METHODS: The patient data of newly diagnosed patients aged 80 years or older who underwent radical resection for CRC from 2010 to 2015 were extracted from the Surveillance, Epidemiology, and End Results (SEER) database and then randomly divided into a training cohort and a validation cohort. The patients collected from our hospital were defined as the external validation cohort. Univariate and multivariate Cox regression was used to select independent predictive factors for the construction of a nomogram to predict 1-, 2- and 3-year CSS. RESULTS: The multivariate Cox regression model identified age, T stage, N stage, perineural invasion, chemotherapy, tumour deposits, carcinoembryonic antigen level, number of lymph node metastases, and number of solid organ metastases as independent predictors of survival. The C-index of the nomogram for 1-, 2- and 3-year CSS was 0.758, 0.762, and 0.727, respectively, demonstrating significant clinical value and substantial reliability compared to the TNM stage. The calibration curve and area under the curve also indicated considerable predictive accuracy. In addition, decision curve analysis demonstrated desirable net benefits in clinical application. CONCLUSION: We constructed a nomogram for predicting the CSS of individual octogenarian patients with CRC who underwent radical resection. The nomogram performed better than the TNM staging system in this particular population and could guide clinicians in clinical follow-up and individual therapeutic plan formulation.
Assuntos
Neoplasias Colorretais , Nomogramas , Humanos , Masculino , Neoplasias Colorretais/cirurgia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Feminino , Idoso de 80 Anos ou mais , Programa de SEER , Estadiamento de Neoplasias , Reprodutibilidade dos Testes , Modelos de Riscos Proporcionais , PrognósticoRESUMO
Cholesterol is regarded as a signaling molecule in regulating the metabolism and function of fat cells, in which 7-Dehydrocholesterol reductase (DHCR7) is a key enzyme that catalyzes the conversion of 7-dehydrocholesterol to cholesterol, however, the exact function of DHCR7 in goat adipocytes remains unknown. Here, the effect of DHCR7 on the formation of subcutaneous and intramuscular fat in goats was investigated in vitro, and the result indicated that the mRNA level of DHCR7 showed a gradual downward trend in subcutaneous adipogenesis, but an opposite trend in intramuscular adipogenesis. In the process of subcutaneous preadipocytes differentiation, overexpression of DHCR7 inhibited the expression of adipocytes differentiation marker genes (CEBP/α, CEBP/ß, SREBP1 and AP2), lipid metabolism-related genes (AGPAT6, FASN, SCD1 and LPL), and the lipid accumulation. However, in intramuscular preadipocyte differentiation, DHCR7 overexpression showed a promoting effect on adipocyte differentiation marker genes (CEBP/α, CEBP/ß, PPARγ and SREBP1) and lipid metabolism-related genes (GPAM, AGPAT6, DGAT1 and SCD1) expression, and on lipid accumulation. In summary, our work demonstrated that DHCR7 played an important role in regulating adipogenic differentiation and lipid metabolism in preadipocytes in goats, which is of great significance for uncovering the underlying molecular mechanism of adipocyte differentiation and improving goat meat quality.
Assuntos
Cabras , Oxirredutases , Animais , Cabras/genética , Diferenciação Celular/genética , Adipogenia/genética , Adipócitos/metabolismo , Antígenos de Diferenciação/metabolismo , Antígenos de Diferenciação/farmacologia , Colesterol/metabolismo , Lipídeos , PPAR gama/metabolismoRESUMO
Early studies have shown that the gut microbiota is a critical target during cadmium exposure. The prebiotic activity of epigallocatechin-3-gallate (EGCG) plays an essential role in treating intestinal inflammation and damage. However, the exact intestinal barrier protection mechanism of EGCG against cadmium exposure remains unclear. In this experiment, four-week-old mice were exposed to cadmium (5â¯mgâ¯kg-1) for four weeks. Through 16â¯S rDNA analysis, we found that cadmium disrupted the gut microbiota and inhibited the indole metabolism pathway of tryptophan (TRP), which serves as the principal microbial production route for endogenous ligands to activate the aryl hydrocarbon receptor (AhR). Additionally, cadmium downregulated the intestinal AhR signaling pathway and harmed the intestinal barrier function. Treatment with EGCG (20â¯mgâ¯kg-1) and the AhR agonist 6-Formylindolo[3,2-b] carbazole (FICZ) (1⯵g/d) significantly activated the AhR pathway and alleviated intestinal barrier injury. Notably, EGCG partially restored the gut microbiota and upregulated the TRP-indole metabolism pathway to increase the level of indole-related AhR agonists. Our findings demonstrate that cadmium dysregulates common gut microbiota to disrupt TRP metabolism, impairing the AhR signaling pathway and intestinal barrier. EGCG reduces cadmium-induced intestinal functional impairment by intervening in the intestinal microbiota to metabolize AhR agonists. This study offers insights into the toxic mechanisms of environmental cadmium and a potential mechanism to protect the intestinal barrier with EGCG.
Assuntos
Cádmio , Catequina , Microbioma Gastrointestinal , Receptores de Hidrocarboneto Arílico , Transdução de Sinais , Triptofano , Animais , Catequina/análogos & derivados , Catequina/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Triptofano/metabolismo , Triptofano/análogos & derivados , Cádmio/toxicidade , Transdução de Sinais/efeitos dos fármacos , Masculino , Intestinos/efeitos dos fármacos , Intestinos/patologia , Camundongos Endogâmicos C57BL , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Indóis/farmacologia , Carbazóis/farmacologiaRESUMO
BACKGROUND: This study investigates the precision of nurse practitioners (NPs) in measuring intracranial lesion volumes using the ABC/2 method, a simple yet widely used technique in neurosurgical practices. Amidst physician workforce shortages, the role of NPs in clinical practice, including specialized tasks like lesion volume estimation, is gaining importance. METHODS: We conducted a retrospective study involving patients treated for intracranial meningiomas. NPs estimated tumor volumes using the ABC/2 method, which was then compared with automated ABC/2 estimations considered as the gold standard. Statistical analyses, including paired sample t-tests, Bland-Altman analysis, and Intraclass Correlation Coefficient (ICC) analysis, were employed to assess measurement accuracy and consistency. RESULTS: Among the 265 meningioma patients included, NPs measured the average tumor volume as 36.95 ml, generally underestimating it compared to the 39.57 ml average obtained by the automated ABC/2 method. This underestimation, however, was clinically modest, indicated by an average percentage difference of 6.59% and a Cohen's d value of 0.08. Consistency in measurements, assessed using Bland-Altman and ICC analyses, demonstrated a high level of agreement between NPs measurements and the automated method. Additionally, no significant differences in measurement accuracy were observed either among different NPs or across NPs with varying levels of work experience. CONCLUSIONS: Nurse practitioners can effectively employ the ABC/2 method for estimating intracranial lesion volumes with reasonable accuracy and consistency, irrespective of their work experience. This finding is pivotal in enhancing the role of NPs in neurosurgical practices and could be significant in alleviating the strain caused by the global shortage of physicians. Future research may explore extending NPs' roles in other clinical diagnostic and therapeutic tasks.
RESUMO
BACKGROUND: In public health emergencies, nurses are vulnerable to adverse reactions, especially job burnout. It is critical to identify nurses at risk of burnout early and implement interventions as early as possible. METHODS: A cross-sectional survey of the hospitals in Xiangyang City was conducted in January, 2023 using stratified cluster sampling. Anonymized data were collected from 1584 working nurses. The Impact of Events Scale-Revised (IES-R) and the Chinese version of the Maslach Burnout Inventory-General Survey (MBI-GS) were used to evaluate the post-traumatic stress disorder (PTSD) and burnout of nurses in public health emergencies. Logistic regression analysis was established to screen for risk factors of burnout, and a nomogram was developed to predict the risk of burnout. A calibration curve and the area under the receiver operating characteristic (ROC) curve were used to validate the nomogram internally. RESULTS: This study showed that only 3.7% of nurses were completely free of PTSD during a public health emergency. We found that PTSD varied by age, marital status, procreation status, length of service, employee status, and whether working in the ICU. The nurses aged 30 ~ 40 years old, single, married without children, non-regular employees, worked for less than three years or worked in the ICU had higher levels of PTSD. Regarding the prevalence of burnout, 27.4%, 48.5%, and 18.6% of nurses had a high level of emotional exhaustion (EE), depersonalization (DP), and diminished personal accomplishment (PA), respectively. There, 31.1% of nurses had more than two types of job burnout. The number of night shifts, the type of hospital, marital status, and the severity of PTSD were all associated with higher rates of exhaustion among nurses. As a graphical representation of the model, a nomogram was created and demonstrated excellent calibration and discrimination in both sets (AUC = 0.787). CONCLUSIONS: This study confirmed the PTSD and burnout are common problems for in-service nurses during public health emergencies and screened out the high-risk groups of job burnout. It is necessary to pay more attention nurses who are single and working in general hospitals with many night shifts, especially nurses with severe PTSD. Hospitals can set up nurses' personal health records to give timely warnings to nurses with health problems, and carry out support interventions to relieve occupational stress.
RESUMO
Phototherapy is an emerging non-pharmacological treatment for depression, circadian rhythm disruptions, and neurodegeneration, as well as pain conditions including migraine and fibromyalgia. However, the mechanism of phototherapy-induced antinociception is not well understood. Here, using fiber photometry recordings of population-level neural activity combined with chemogenetics, we found that phototherapy elicits antinociception via regulation of the ventral lateral geniculate body (vLGN) located in the visual system. Specifically, both green and red lights caused an increase of c-fos in vLGN, with red light increased more. In vLGN, green light causes a large increase in glutamatergic neurons, whereas red light causes a large increase in GABAergic neurons. Green light preconditioning increases the sensitivity of glutamatergic neurons to noxious stimuli in vLGN of PSL mice. Green light produces antinociception by activating glutamatergic neurons in vLGN, and red light promotes nociception by activating GABAergic neurons in vLGN. Together, these results demonstrate that different colors of light exert different pain modulation effects by regulating glutamatergic and GABAergic subpopulations in the vLGN. This may provide potential new therapeutic strategies and new therapeutic targets for the precise clinical treatment of neuropathic pain.