Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Chromatogr ; 35(7): e5091, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33618435

RESUMO

High-throughput lipidomics technology was used to explore the potential therapeutic targets and mechanism of action of gelanxinning capsule on rat model with coronary heart disease (CHD). This study attempts to provide a novel method to interpret the molecular mechanism of traditional medicine. The lipid markers of CHD were determined by full-scan analysis based on ultra-performance liquid chromatography-high-definition mass spectrometry. Then, the metabolic changes associated with gelanxinning capsule treatment via the modulation of lipid biomarkers and pathway in rats were characterized. After gelanxinning treatment, the metabolic profile tended to recover compared with the model group. A total of 26 potential biomarkers were identified to represent the disorders of lipid metabolism in CHD animal model, of which 19 were regulated by gelanxinning capsule administration, and four metabolic pathways such as glycerophospholipid metabolism, sphingolipid metabolism, glycosylphosphatidylinositol-anchor biosynthesis, and glycerolipid metabolism were involved. From the pathway analysis, it was found that glycerophospholipid metabolism and sphingolipid metabolism with significant differences have the potential to be regarded as new targets for the treatment of CHD. Gelanxinning capsule with its good therapeutic effect protects against CHD by regulating lipid biomarkers and pathway from lipidomics-guided biochemical analysis.


Assuntos
Doença das Coronárias , Medicamentos de Ervas Chinesas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipidômica/métodos , Lipídeos/sangue , Animais , Biomarcadores/sangue , Cromatografia Líquida/métodos , Doença das Coronárias/sangue , Doença das Coronárias/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
2.
Front Nutr ; 11: 1427608, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39183982

RESUMO

Currently, the treatment of various human ailments is based on different therapeutic approaches including traditional and modern medicine systems. Precision nutrition has come into existence as an emerging approach considering the diverse aspects such as age, sex, genetic and epigenetic makeup, apart from the pathophysiological conditions. The continuously and gradually evolving disciplines of genomics about nutrition have elucidated the importance of genetic variations, epigenetic information, and expression of myriads of genes in disease progression apart from the involvement in modulating therapeutic responses. Further, the investigations have presented the considerable role of gut microbiota comprising of commensal and symbionts performing innumerable activities such as release of bioactive molecules, defense against pathogenic microbes, and regulation of immunity. Noteworthy, the characteristics of the microbiome change depending on host attributes, environmental factors, and habitat, in addition to diet, and therefore can be employed as a biomarker to unravel the response to given food. The specific diet and the components thereof can be suggested for supporting the enrichment of the desired microbial community to some extent as an important part of precision nutrition to achieve not only the goal of human health but also of healthy aging.

3.
Front Bioeng Biotechnol ; 12: 1398210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39253704

RESUMO

The natural environment is often contaminated with hydrophobic pollutants such as long-chain hydrocarbons, petrochemicals, oil spills, pesticides, and heavy metals. Hydrophobic pollutants with a toxic nature, slow degradation rates, and low solubility pose serious threats to the environment and human health. Decontamination based on conventional chemical surfactants has been found to be toxic, thereby limiting its application in pharmaceutical and cosmetic industries. In contrast, biosurfactants synthesized by various microbial species have been considered superior to chemical counterparts due to their non-toxic and economical nature. Some biosurfactants can withstand a wide range of fluctuations in temperature and pH. Recently, biosurfactants have emerged as innovative biomolecules not only for solubilization but also for the biodegradation of environmental pollutants such as heavy metals, pesticides, petroleum hydrocarbons, and oil spills. Biosurfactants have been well documented to function as emulsifiers, dispersion stabilizers, and wetting agents. The amphiphilic nature of biosurfactants has the potential to enhance the solubility of hydrophobic pollutants such as petroleum hydrocarbons and oil spills by reducing interfacial surface tension after distribution in two immiscible surfaces. However, the remediation of contaminants using biosurfactants is affected considerably by temperature, pH, media composition, stirring rate, and microorganisms selected for biosurfactant production. The present review has briefly discussed the current advancements in microbially synthesized biosurfactants, factors affecting production, and their application in the remediation of environmental contaminants of a hydrophobic nature. In addition, the latest aspect of the circular bioeconomy is discussed in terms of generating biosurfactants from waste and the global economic aspects of biosurfactant production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA