Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Small ; 19(33): e2300931, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093183

RESUMO

Conductive composites based on thermosetting resins have broad applications in various fields. In this paper, a new self-compositing strategy is developed for improving the conductivity of graphene nanoplatelet/thermosetting resin composites by optimizing the transport channels. To implement this strategy, conventional graphene nanoplatelet/thermosetting resin is crushed into micron-sized composite powders, which are mixed with graphene nanoplatelets to form novel complex fillers to prepare the self-composited materials with thermosetting resins. A highly conductive compact graphene layer is formed on the surface of the crushed composite powders, while the addition of the micron-sized powder induces the orientation of graphene nanoplatelets in the resin matrix. Therefore, a highly conductive network is constructed inside the self-composited material, significantly enhancing the electrical conductivity. The composite materials based on epoxy resin, cyanate resin, and unsaturated polyester are prepared with this method, reflecting that the method is universal for preparing composites based on thermosetting resins. The highest electrical conductivity of the self-composited material based on unsaturated polyester is as high as 25.9 S m-1 . This self-compositing strategy is simple, efficient, and compatible with large-scale industrial production, thus it is a promising and general way to enhance the conductivity of thermosetting resin matrix composites.

2.
Med Res Rev ; 42(4): 1704-1734, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35638460

RESUMO

Many drugs can bind directly to proteins or be bioactivated by metabolizing enzymes to form reactive metabolites (RMs) that rapidly bind to proteins to form drug-protein conjugates or metabolite-protein conjugates (DMPCs). The close relationship between DMPCs and idiosyncratic adverse drug reactions (IADRs) has been recognized; drug discovery teams tend to avoid covalent interactions in drug discovery projects. Covalent interactions in DMPCs can provide high potency and long action duration and conquer the intractable targets, inspiring drug design, and development. This forms the dual role feature of DMPCs. Understanding the functional implications of DMPCs in IADR control and therapeutic applications requires precise identification of these conjugates from complex biological samples. While classical biochemical methods have contributed significantly to DMPC detection in the past decades, the low abundance and low coverage of DMPCs have become a bottleneck in this field. An emerging transformation toward shotgun proteomics is on the rise. The evolving shotgun proteomics techniques offer improved reproducibility, throughput, specificity, operability, and standardization. Here, we review recent progress in the systematic discovery of DMPCs using shotgun proteomics. Furthermore, the applications of shotgun proteomics supporting drug development, toxicity mechanism investigation, and drug repurposing processes are also reviewed and prospected.


Assuntos
Proteínas , Proteômica , Desenho de Fármacos , Descoberta de Drogas , Humanos , Proteômica/métodos , Reprodutibilidade dos Testes
3.
J Am Chem Soc ; 144(42): 19410-19416, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36223688

RESUMO

Trace water in organic solvents can play a crucial role in the construction of supramolecular assemblies, which has not gained enough attention until very recent years. Herein, we demonstrate that residual water in organic solvents plays a decisive role in the regulation of the evolution of assembled structures and their functionality. By adding Mg(ClO4)2 into a multi-component organic solution containing terpyridine-based ligand 3Tpy and monodentate imidazole-based ligand M2, the system underwent an unexpected kinetic evolution. Metallo-supramolecular polymers (MSP) formed first by the coordination of 3Tpy and Mg2+, but they subsequently decomposed due to the interference of M2, resulting in a transient MSP system. Further investigation revealed that this occurred because residual water in the solvent and M2 cooperatively coordinated with Mg2+. This allowed M2 to capture Mg2+ from MSP, which led to depolymerization. However, owing to the slow reaction between trace water/M2/Mg2+, the formation of MSP still occurred first. Therefore, water regulated both the thermodynamics and kinetics of the system and was the key factor for constructing the transient MSP. Fine-tuning the water content and other assembly motifs regulated the assembly evolution pathway, tuned the MSP lifetime, and made the luminescent color of the system undergo intriguing transition processes over time.


Assuntos
Imidazóis , Água , Água/química , Ligantes , Solventes/química , Polímeros/química
4.
Crit Rev Food Sci Nutr ; 62(31): 8589-8645, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34096420

RESUMO

Edible flowers are attracting special therapeutic attention and their administration is on the rise. Edible flowers play pivotal modulatory roles on oxidative stress and related interconnected apoptotic/inflammatory pathways toward the treatment of cancer. In this review, we highlighted the phytochemical content and therapeutic applications of edible flowers, as well as their modulatory potential on the oxidative stress pathways and apoptotic/inflammatory mediators, resulting in anticancer effects. Edible flowers are promising sources of phytochemicals (e.g., phenolic compounds, carotenoids, terpenoids) with several therapeutic effects. They possess anti-inflammatory, anti-diabetic, anti-microbial, anti-depressant, anxiolytic, anti-obesity, cardioprotective, and neuroprotective effects. Edible flowers potentially modulate oxidative stress by targeting erythroid nuclear transcription factor-2/extracellular signal-regulated kinase/mitogen-activated protein kinase (Nrf2/ERK/MAPK), reactive oxygen species (ROS), nitric oxide (NO), malondialdehyde (MDA) and antioxidant response elements (AREs). As the interconnected pathways to oxidative stress, inflammatory mediators, including tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukins (ILs) as well as apoptotic pathways such as Bcl-2-associated X protein (Bax), Bcl-2, caspase and cytochrome C are critical targets of edible flowers in combating cancer. In this regard, edible flowers could play promising anticancer effects by targeting oxidative stress and downstream dysregulated pathways.


Assuntos
Antioxidantes , Estresse Oxidativo , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Mediadores da Inflamação/metabolismo , Flores , Apoptose , Inflamação/tratamento farmacológico
5.
Environ Sci Technol ; 56(13): 9536-9545, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35593067

RESUMO

Covalent modification of proteins by reactive pollutants/metabolites might trigger various toxicities resulting from the disruption of protein structures and/or functions, which is critical for understanding the mechanism of pollutants-induced toxicity. However, this mechanism has rarely been touched on due to the lack of a methodology. In this research, the protein modification of bisphenol A (BPA) in rats was characterized using a series of liquid chromatography-tandem mass spectrometry (LC-MS) approaches. BPA-modified cysteine (Cys1) was first released from proteins via enzymatic hydrolysis and identified using LC-MS. Moreover, the positive correlation between Cys1 and hepatotoxicity indicated the involvement of protein modification in BPA toxicity. Then, in vitro incubation of BPA with amino acids and protein confirmed that BPA could specifically modify cysteine residues of proteins after bioactivation and provided four additional modification patterns. Finally, 24 BPA-modified proteins were identified from the liver of BPA-exposed rats using proteomic analysis, and they were mainly enriched in oxidative stress-related pathways. The modification on superoxide dismutases, catalase, and glutathione S-transferases disrupted their enzymatic functions, leading to oxidative damage. These results revealed that the covalent protein modification is an unignorable factor for BPA hepatotoxicity. Moreover, the workflow can be applied to identify protein adducts of other emerging contaminants and possible risk.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Poluentes Ambientais , Animais , Compostos Benzidrílicos/toxicidade , Cisteína , Fenóis , Proteínas , Proteômica , Ratos
6.
Sensors (Basel) ; 22(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35336303

RESUMO

The low mechanical efficiency of metal belt's continuously variable transmission (CVT) limits its application in new energy vehicles. To further improve CVT efficiency and reduce the energy consumption of electric vehicles (EVs) with CVT, this paper proposes a pure electric CVT configuration and a clamping force control strategy. The slip characteristics of CVT are obtained through a bench test, the dynamic model of CVT slip is established, and a clamping force fuzzy control strategy is designed. The strategy is studied by simulation under extreme conditions and standard driving cycles. The simulation results show that the proposed clamping force control strategy has good adaptability. Under extreme conditions, this strategy can ensure that CVT does not undergo macro slip, while reducing the clamping force by 12.86-21.65%. Energy consumption per 100 km is 14.90 kWh in NEDC, which is 6.67% lower compared with the traditional strategy. CVT average efficiency and average transmission efficiency increased by 3.71% and 6.40%. The research results demonstrate that adjusting the CVT clamping force through fuzzy control based on the slip rate can improve the CVT efficiency and energy economy of EVs, which provides a certain reference for CVT clamping force control strategy development and the application of CVT on EVs.

7.
Chem Res Toxicol ; 34(11): 2309-2318, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34665607

RESUMO

Covalent drugs are newly developed and proved to be successful therapies in past decades. However, the pharmacokinetics (PK) and pharmacodynamic (PD) studies of covalent drugs now ignore the drug and metabolite-protein modification. The low abundance of modified proteins also prevents its investigation. Herein, a simple, selective, and sensitive liquid chromatography-mass spectrometry (LC-MS)/MS quantitative method was established based on the mechanism of a drug and its metabolite-protein adducts using osimertinib as an example. Five metabolites with covalent modification potential were identified. The drug and its metabolite-cysteine adducts released from modified proteins by a mixed hydrolysis method were developed to characterize the level of the modified proteins. This turned the quantitative objects from proteins or peptides to small molecules, which increased the sensitivity and throughput of the quantitative approach. Accumulation of protein adducts formed by osimertinib and its metabolites in target organs was observed in vivo and long-lasting modifications were noted. These results interpreted the long duration of the covalent drugs' effect from the perspective of both parent and the metabolites. In addition, the established method could also be applied in blood testing as noninvasive monitoring. This newly developed approach showed great feasibility for PK and PD studies of covalent drugs.


Assuntos
Acrilamidas/análise , Compostos de Anilina/análise , Quimotripsina/metabolismo , Cisteína/análise , Fígado/efeitos dos fármacos , Acrilamidas/metabolismo , Acrilamidas/farmacologia , Compostos de Anilina/metabolismo , Compostos de Anilina/farmacologia , Animais , Bovinos , Cromatografia Líquida , Cisteína/metabolismo , Cisteína/farmacologia , Feminino , Humanos , Hidrólise , Fígado/metabolismo , Masculino , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
8.
Sensors (Basel) ; 21(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466365

RESUMO

Based on the statics and quasi-statics analysis methods, the thermal deformation calculation model of a deep-groove ball bearing was constructed for the helical gear transmission system of a high speed electric drive, and the radial and axial bearing stiffness values of the bearing were calculated under the thermal deformation in this study. The obtained radial and axial stiffness values were introduced into the established dynamics model of helical gear system, and the influence of changed bearing stiffness, resulting from the thermal deformation, on the nonlinear dynamic characteristics of gear pair was analyzed using the Runge-Kutta method. The results show that the axial and radial deformations of bearing occur due to the increase of working speed and temperature, in which the axial stiffness of bearing is improved but the radial stiffness is reduced. The decreasing degree of axial stiffness and the increasing degree of radial stiffness decrease with the gradually increasing working rotational speed. When considering the influence of thermal deformation on the bearing stiffness, the helical gear system will have nonlinear behaviors, such as single periodic, double periodic, and chaotic motion with the change of working speed. Therefore, in order to improve the nonlinear dynamic characteristics of high speed electric drive gear systems, the influence of bearing stiffness change on the dynamic performance of a gear system should be considered in the industrial applications.

9.
J Psycholinguist Res ; 50(2): 239-260, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30895555

RESUMO

The present study examined the relationship between age of acquisition (AoA) and bilingual development for native Chinese children who learned English as a foreign language. A composite test measuring different aspects of language and cognitive skills in Chinese and English was administered on 85 Chinese native primary schoolers, who received bilingual instruction at different points of development (for Chinese, 0 ≤ AoA ≤ 7 years; for English, 2 ≤ AoA ≤ 10 years). Results found AoA constraints on the outcomes of L1 Chinese acquisition are significantly different from those for L2 English. Not all domains of bilingual skills follow the pattern of "the earlier, the better" in language development. Additionally, L1 AoA made unique contributions to L2 English learning. These findings contribute to our understanding on the nature of the AoA effect on bilingual learning.


Assuntos
Multilinguismo , Idade de Início , Criança , China , Humanos , Idioma , Desenvolvimento da Linguagem
10.
Sheng Li Xue Bao ; 71(4): 575-580, 2019 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-31440754

RESUMO

The aim of the present study was to investigate the effect of salidroside (Sal) on inflammatory activation induced by lipopolysaccharide (LPS) in the co-culture of rat alveolar macrophages (AM) NR 8383 and type II alveolar epithelial cells (AEC II) RLE-6TN. CCK-8 colorimetric method was used to detect cell proliferation percentage. The enzyme-linked immunosorbent assay (ELISA) was used to determine the content of tumor necrosis factor alpha (TNF-α), macrophage inflammatory protein-2 (MIP-2) and interleukin-10 (IL-10) in the supernatant. Western blot was used to examine the expression levels of phosphorylated AKT (p-AKT) and total AKT protein. The results showed that pretreatment of RLE-6TN cells or co-culture of RLE-6TN and NR 8383 cells with 32 and 128 µg/mL Sal for 1 h, followed by continuous culture for 24 h, significantly increased the cell proliferation (P < 0.05). Compared with control group, 32 and 128 µg/mL Sal pretreatment significantly increased the ratio of p-AKT/AKT in RLE-6TN cells (P < 0.05). Pretreatment of 32 µg/mL Sal not only inhibited the secretion of TNF-α and MIP-2 by NR 8383 cells induced by LPS (P < 0.05), but also enhanced the inhibitory effect of RLE-6TN and NR 8383 cells co-culture on the secretion of TNF-α and MIP-2 by NR 8383 cells induced by LPS (P < 0.05). In addition, 32 µg/mL Sal pretreatment promoted LPS-induced IL-10 secretion by NR 8383 cells (P < 0.05), and enhanced the promoting effect of co-culture of RLE-6TN and NR 8383 cells on the IL-10 secretion by LPS-induced NR 8383 cells (P < 0.05). In conclusion, Sal may directly inhibit LPS-induced inflammatory activation of AM (NR 8383), promote the proliferation of AEC II (RLE-6TN) through PI3K/AKT signaling pathway, and enhance the regulatory effect of AEC II on LPS-induced inflammatory activation of AM.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Glucosídeos/farmacologia , Macrófagos Alveolares/efeitos dos fármacos , Fenóis/farmacologia , Transdução de Sinais , Células Epiteliais Alveolares/metabolismo , Animais , Linhagem Celular , Quimiocina CXCL2/metabolismo , Técnicas de Cocultura , Interleucina-10/metabolismo , Lipopolissacarídeos , Macrófagos Alveolares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Fator de Necrose Tumoral alfa/metabolismo
11.
J Environ Sci (China) ; 84: 21-28, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31284913

RESUMO

It is urgent to explore an effective removal method for perfluorooctanoic acid (PFOA) due to its recalcitrant nature. In this study, a novel chitosan-based hydrogel (CEGH) was prepared with a simple method using chitosan and ethylene glycol through a repeated freezing-thawing procedure. The adsorption of PFOA anions to CEGH agreed well to the Freundlich-Langmuir model with a maximum adsorption capacity as high as 1275.9 mg/g, which is higher than reported values of most adsorbents for PFOA. The adsorption was influenced by experimental conditions. Experimental results showed that the main removal mechanism was the ionic hydrogen bond interaction between carbonyl groups (COO-) of PFOA and protonated amine (NH+) of the CEGH adsorbent. Therefore, CEGH is a very attractive adsorbent that can be used to remove PFOA from water in the future.


Assuntos
Caprilatos/isolamento & purificação , Quitosana/química , Etilenoglicol/química , Fluorocarbonos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Hidrogéis , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica
12.
Arterioscler Thromb Vasc Biol ; 37(11): 2075-2086, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28882875

RESUMO

OBJECTIVE: Class III phosphoinositide 3-kinase, also known as VPS34 (vacuolar protein sorting 34), is a highly conserved enzyme regulating important cellular functions such as NADPH oxidase (NOX) assembly, membrane trafficking, and autophagy. Although VPS34 is expressed in platelets, its involvement in platelet activation remains unclear. Herein, we investigated the role of VPS34 in platelet activation and thrombus formation using VPS34 knockout mice. APPROACH AND RESULTS: Platelet-specific VPS34-deficient mice were generated and characterized. VPS34 deficiency in platelets did not influence tail bleeding time. In a ferric chloride-induced mesenteric arteriolar thrombosis model, VPS34-/- mice exhibited a prolonged vessel occlusion time compared with wild-type mice (42.05±4.09 versus 18.30±2.47 minutes). In an in vitro microfluidic whole-blood perfusion assay, thrombus formation on collagen under arterial shear was significantly reduced for VPS34-/- platelets. VPS34-/- platelets displayed an impaired aggregation and dense granule secretion in response to low doses of collagen or thrombin. VPS34 deficiency delayed clot retraction but did not influence platelet spreading on fibrinogen. We also demonstrated that VPS34 deficiency altered the basal level of autophagy in resting platelets and hampered NOX assembly and mTOR (mammalian target of rapamycin) signaling during platelet activation. Importantly, we identified the NOX-dependent reactive oxygen species generation as the major downstream effector of VPS34, which in turn can mediate platelet activation. In addition, by using a specific inhibitor 3-methyladenine, VPS34 was found to operate through a similar NOX-dependent mechanism to promote human platelet activation. CONCLUSIONS: Platelet VPS34 is critical for thrombosis but dispensable for hemostasis. VPS34 regulates platelet activation by influencing NOX assembly.


Assuntos
Coagulação Sanguínea , Plaquetas/enzimologia , Classe III de Fosfatidilinositol 3-Quinases/sangue , NADPH Oxidases/sangue , Fosfatos de Fosfatidilinositol/sangue , Ativação Plaquetária , Trombose/enzimologia , Adulto , Animais , Autofagia , Cloretos , Classe III de Fosfatidilinositol 3-Quinases/deficiência , Classe III de Fosfatidilinositol 3-Quinases/genética , Colágeno/sangue , Modelos Animais de Doenças , Feminino , Compostos Férricos , Genótipo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Agregação Plaquetária , Espécies Reativas de Oxigênio/sangue , Transdução de Sinais , Serina-Treonina Quinases TOR/sangue , Trombina/metabolismo , Trombose/sangue , Trombose/induzido quimicamente , Trombose/genética , Fatores de Tempo , Adulto Jovem
13.
Water Sci Technol ; 77(1-2): 548-554, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29377839

RESUMO

To develop low-cost adsorbents for aqueous nitrate, biochars were prepared from three types of agricultural residuals at different pyrolysis temperatures (300 °C, 450 °C, and 600 °C). The corncob biochar produced at 600 °C (CC600) was the best nitrate adsorbent of all the tested biochars. Characterization results showed that CC600 had good thermal stability, porous structure, and abundant surface functional groups. Findings from batch adsorption experiments demonstrated that CC600 showed relatively fast adsorption kinetics to nitrate in aqueous solutions. In addition, the Langmuir adsorption capacity of CC600 to nitrate was 14.46 mg/g, comparable to that of other biochar-based adsorbents. Therefore, CC600 showed promising potential to be used as a low-cost adsorbent for the treatment of nitrate in water.


Assuntos
Carvão Vegetal/química , Modelos Teóricos , Nitratos/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Agricultura , Cinética , Nitratos/química , Propriedades de Superfície , Resíduos , Poluentes Químicos da Água/química
14.
Sheng Li Xue Bao ; 69(1): 41-46, 2017 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-28217806

RESUMO

To investigate the effect of salidroside (Sal) on the inflammatory activation of lipopolysaccharide (LPS)-induced murine macrophage cell line J774.1 and its possible mechanism, the cells were treated with PBS, LPS (0.5 µg/mL) or different doses of Sal (5, 25, 125 µg/mL) + LPS (0.5 µg/mL). CCK-8 colorimetric method was used to detect the cell activity. The enzyme-linked immunosorbent assay (ELISA) was used to detect the contents of TNF-α, MCP-1 and MIP-2 in the supernatant, and the content of NO in the supernatant was determined by nitrate reductase method. The expression levels of iNOS mRNA was detected by RT-PCR. Western blot was used to detect the expression levels of iNOS protein in cytoplasm and NF-kappaB/p65 (NF-κB/p65) protein in both cytoplasm and nucleus, and DNA binding activity of NF-κB/p65 was detected by using TransAMTM NF-κB/p65 activity assay kit. The results showed that the treatment with 0.5 µg/mL LPS and different doses of Sal (5, 25, 125 µg/mL) for 12 h had no effect on cell viability. Compared with LPS stimulation group, pretreatment with Sal significantly reduced the contents of TNF-α, MCP-1, MIP-2 and NO in culture supernatant induced by LPS in a dose dependent manner (P < 0.05), downregulated the expression levels of iNOS mRNA and protein (P < 0.05), decreased the expression level of NF-κB/p65 protein in nucleus (P < 0.05) while accordingly increased that in cytoplasm (P < 0.05), and decreased DNA binding activity of NF-κB/p65 in a dose dependent manner (P < 0.05). The results suggested that Sal pretreatment can reduce macrophage inflammatory activation induced by LPS, and the mechanism may be through the LPS/TLR4/NF-κB signaling pathway, thereby reducing the excessive expression and secretion of inflammatory mediators and cytokines.


Assuntos
Glucosídeos/farmacologia , Macrófagos/efeitos dos fármacos , Fenóis/farmacologia , Animais , Linhagem Celular , Quimiocina CCL2/metabolismo , Quimiocina CXCL2/metabolismo , Ensaio de Imunoadsorção Enzimática , Inflamação , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
Sheng Li Xue Bao ; 69(3): 291-297, 2017 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-28638921

RESUMO

To study the protective effect and mechanism of synthetic salidroside on acute lung injury (ALI) induced by lipopolysaccharide (LPS), male Sprague-Dawley (SD) rats were randomly divided into saline control group, 3 mg/kg LPS model group, different doses of salidroside groups (5, 20 and 80 mg/kg), and 5 mg/kg dexamethasone group. Intratracheal LPS instillation was used to establish the ALI model 0.5 h after intraperitoneal injection of salidroside or dexamethasone, and the rats were sacrificed 6 h later. Lung wet/dry weight ratio (W/D) was calculated. Lung tissue pathology and lung injury score (LIS) were observed and evaluated through hematoxylin and eosin (HE) staining. The centrifugal sediment of bronchoalveolar lavage fluid (BALF) was used to count the polymorphonuclear leukocyte (PMN) number by Wright's staining, and the centrifugal supernatant of BALF was used to determine the contents of protein and inflammatory factors (TNF-α, IL-1ß and IL-6). The contents of myeloperoxidase (MPO) and malondialdehyde (MDA) in lung tissue were determined. Western blot was used to detect the expression levels of phosphorylated and total nuclear factor kappa B (NF-κB)/p65 protein in lung tissue. The results showed that, compared with LPS group, the intervention of synthetic salidroside alleviated the pathological damage in lung tissue, decreased the LIS and lung W/D ratio (P < 0.05), reduced the PMN number, the contents of protein and inflammatory factors in BALF (P < 0.05), reduced the contents of MPO and MDA in lung tissue (P < 0.05), and inhibited the expression of p-NF-κB in lung tissue (P < 0.05). The results suggest that synthetic salidroside has a protective effect on ALI induced by LPS, and its mechanism is related to inhibiting the phosphorylation of NF-κB and reducing the aggregation of PMN in the lung.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Glucosídeos/farmacologia , Neutrófilos/citologia , Fenóis/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Dexametasona/farmacologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Malondialdeído/metabolismo , NF-kappa B/metabolismo , Peroxidase/metabolismo , Fosforilação , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
16.
Zhongguo Dang Dai Er Ke Za Zhi ; 18(2): 183-8, 2016 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-26903068

RESUMO

The etiology and pathogenic mechanism of autism spectrum disorders (ASD) are still unclear. The relationship between vitamin D and ASD has drawn attention in recent years due to common vitamin D deficiency in children with ASD. This article reviews the peripheral blood levels of vitamin D in children with ASD, the possible reasons for hypovitamin D and its possible roles in the etiology of ASD and the efficacy of vitamin D supplementation in ASD.


Assuntos
Transtorno do Espectro Autista/sangue , Deficiência de Vitamina D/sangue , Vitamina D/sangue , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Humanos , Vitamina D/administração & dosagem , Deficiência de Vitamina D/tratamento farmacológico
17.
Alzheimers Dement ; 11(7): 792-814, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26194313

RESUMO

INTRODUCTION: Genetic data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) have been crucial in advancing the understanding of Alzheimer's disease (AD) pathophysiology. Here, we provide an update on sample collection, scientific progress and opportunities, conceptual issues, and future plans. METHODS: Lymphoblastoid cell lines and DNA and RNA samples from blood have been collected and banked, and data and biosamples have been widely disseminated. To date, APOE genotyping, genome-wide association study (GWAS), and whole exome and whole genome sequencing data have been obtained and disseminated. RESULTS: ADNI genetic data have been downloaded thousands of times, and >300 publications have resulted, including reports of large-scale GWAS by consortia to which ADNI contributed. Many of the first applications of quantitative endophenotype association studies used ADNI data, including some of the earliest GWAS and pathway-based studies of biospecimen and imaging biomarkers, as well as memory and other clinical/cognitive variables. Other contributions include some of the first whole exome and whole genome sequencing data sets and reports in healthy controls, mild cognitive impairment, and AD. DISCUSSION: Numerous genetic susceptibility and protective markers for AD and disease biomarkers have been identified and replicated using ADNI data and have heavily implicated immune, mitochondrial, cell cycle/fate, and other biological processes. Early sequencing studies suggest that rare and structural variants are likely to account for significant additional phenotypic variation. Longitudinal analyses of transcriptomic, proteomic, metabolomic, and epigenomic changes will also further elucidate dynamic processes underlying preclinical and prodromal stages of disease. Integration of this unique collection of multiomics data within a systems biology framework will help to separate truly informative markers of early disease mechanisms and potential novel therapeutic targets from the vast background of less relevant biological processes. Fortunately, a broad swath of the scientific community has accepted this grand challenge.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Biomarcadores/metabolismo , Disfunção Cognitiva/genética , Apolipoproteínas E/genética , Bases de Dados Bibliográficas/estatística & dados numéricos , Progressão da Doença , Estudos de Associação Genética , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Neuroimagem
18.
Noise Health ; 16(71): 218-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25033788

RESUMO

Noise exposure is central to hearing impairment, especially for adolescents. Chinese youth frequently and consciously expose themselves to loud noise, often for many hours. Hence, a Chinese-adapted evaluative scale to measure youth's attitude toward noise could rigorously evaluate data validity and reliability. After authenticating the youth attitude to noise scale (YANS) originally developed by Olsen and Erlandsson, we purposively sampled and surveyed 642 freshmen at Capital Medical University in Beijing, China. To establish validity, we conducted confirmatory factor analysis according to Olsen's classification. To establish reliability, we calculated Cronbach's alpha coefficient and split-half coefficient. We used Bland-Altman analysis to calculate the agreement limits between test and retest. Among 642 students, 550 (85.67%) participated in statistical analysis (399 females [72.55%] vs. 151 males [27.45%]). Confirmatory factorial analysis sorted 19 items into four main subcategories (F1-F4) in terms of factor load, yielding a correlation coefficient between factors <0.40. The Cronbach's alpha coefficient (0.70) was within the desirable range, confirming the reliability of Chinese-adapted YANS. The split-half coefficient was 0.53. Furthermore, the paired t-test reported a mean difference of 0.002 (P = 0.9601). Notably, the mean overall YANS score (3.46) was similar to YANS testing in Belgium (3.10), but higher than Sweden (2.10) and Brazil (2.80). The Chinese version of the YANS questionnaire is valid, reliable, and adaptable to Chinese adolescents. Analysis of the adapted YANS showed that a significant number of Chinese youth display a poor attitude and behavior toward noise. Therefore, Chinese YANS can play a pivotal role in programs that focus on increasing youth awareness of noise and hearing health.


Assuntos
Atitude Frente a Saúde , Ruído , Adolescente , Análise Fatorial , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Inquéritos e Questionários , Adulto Jovem
19.
Eur J Med Res ; 29(1): 54, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229116

RESUMO

To screen characteristic genes related to sarcopenia by bioinformatics and machine learning, and to verify the accuracy of characteristic genes in the diagnosis of sarcopenia. Download myopia-related data sets from geo public database, find the differential genes through R language limma package after merging, STRING database to build protein interaction network, and do Go analysis and GSEA analysis to understand the functions and molecular signal pathways that may be affected by the differential genes. Further screen the characteristic genes through LASSO and SVM-RFE machine algorithms, make the ROC curve of the characteristic genes, and obtain the AUC value. 10 differential genes were obtained from the data set, including 7 upregulated genes and 3 downregulated genes. Eight characteristic genes were screened by a machine learning algorithm, and the AUC value of characteristic genes exceeded 0.7. In patients with sarcopenia, the expression of TPPP3, C1QA, LGR5, MYH8, and CDKN1A genes are upregulated, and the expression of SLC38A1, SERPINA5, and HOXB2 genes are downregulated. The above genes have high accuracy in the diagnosis of sarcopenia. The research results provide new ideas for the diagnosis and mechanism research of sarcopenia.


Assuntos
Sarcopenia , Humanos , Sarcopenia/diagnóstico , Sarcopenia/genética , Algoritmos , Biologia Computacional , Aprendizado de Máquina , Epigênese Genética , Fatores de Transcrição , Proteínas de Homeodomínio
20.
Nat Commun ; 15(1): 4806, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839743

RESUMO

3D printing of liquid metal remains a big challenge due to its low viscosity and large surface tension. In this study, we use Carbopol hydrogel and liquid gallium-indium alloy to prepare a liquid metal high internal phase emulsion gel ink, which can be used for direct-ink-writing 3D printing. The high volume fraction (up to 82.5%) of the liquid metal dispersed phase gives the ink excellent elastic properties, while the Carbopol hydrogel, as the continuous phase, provides lubrication for the liquid metal droplets, ensuring smooth flow of the ink during shear extrusion. These enable high-resolution and shape-stable 3D printing of three-dimensional structures. Moreover, the liquid metal droplets exhibit an electrocapillary phenomenon in the Carbopol hydrogel, which allows for demulsification by an electric field and enables electrical connectivity between droplets. We have also achieved the printing of ink on flexible, non-planar structures, and demonstrated the potential for alternating printing with various materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA