Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(21): 9354-9362, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561032

RESUMO

All-carbon graphdiyne (GDY)-based materials have attracted extensive attention owing to their extraordinary structures and outstanding performance in electrochemical energy storage. Straightforward insights into the interfacial evolution at GDY electrode/electrolyte interface could crucially enrich the fundamental comprehensions and inspire targeted regulations. Herein, in situ optical microscopy and atomic force microscopy monitoring of the GDY and N-doped GDY electrodes reveal the interplay between the solid electrolyte interphase (SEI) and Li deposition. The growth and continuous accumulation of the flocculent-like SEI is directly tracked at the surface of GDY electrode. Moreover, the nanoparticle-shaped SEI homogeneously propagates at the interface when N configurations are involved, providing a critical clue for the N-doping effects of stabilizing interfaces and homogenizing Li deposition. This work probes into the dynamic evolution and structure-reactivity correlation in detail, creating effective strategies for GDY-based materials optimization in lithium-ion batteries.

2.
Angew Chem Int Ed Engl ; 58(23): 7802-7807, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-30977231

RESUMO

Safety concerns are impeding the applications of lithium metal batteries. Flame-retardant electrolytes, such as organic phosphates electrolytes (OPEs), could intrinsically eliminate fire hazards and improve battery safety. However, OPEs show poor compatibility with Li metal though the exact reason has yet to be identified. Here, the lithium plating process in OPEs and Li/OPEs interface chemistry were investigated through ex situ and in situ techniques, and the cause for this incompatibility was revealed to be the highly resistive and inhomogeneous interfaces. Further, a nitriding interface strategy was proposed to ameliorate this issue and a Li metal anode with an improved Li cycling stability (300 h) and dendrite-free morphology is achieved. Meanwhile, the full batteries coupled with nickel-rich cathodes, such as LiNi0.8 Co0.1 Mn0.1 O2 , show excellent cycling stability and outstanding safety (passed the nail penetration test). This successful nitriding-interface strategy paves a new way to handle the incompatibility between electrode and electrolyte.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA