Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38543978

RESUMO

Terahertz (THz) non-destructive testing can detect internal defects in dielectric materials. However, this technology is mainly used for detecting thin and simple structures at present, lacking validations for the detection effectiveness of internal defects in thicker and more complex structures, such as fiber-web-reinforced composite sandwich panels. In this study, samples of fiber-web-reinforced polymethacrylimide foam sandwich panels, which are, respectively, 20 mm and 30 mm thick, were made to detect the internal debonding, inclusion, pore, and crack defects by the THz time-domain spectroscopy system (THz-TDS). The peak-to-peak-imaging algorithm, maximum-amplitude-imaging algorithm, minimum-amplitude-imaging algorithm, pulse-width-imaging algorithm, and time-of-flight-imaging algorithm were used to process and image the collected THz signals. The results showed that the peak-to-peak-imaging algorithm had the best performance. To address the low imaging resolution of THz-TDS, a block-based super-resolution reconstruction method-SSSRGAN-is proposed, which can improve image resolution while maintaining the clear edge contours of defects. The defect-detection results of the samples showed that THz-TDS could detect all pore, debonding, and crack defects, with a minimum size of 3 mm for pores and debonding and a minimum thickness of 1 mm for cracks. The method showed poor detection performance for inclusions with a thickness of 0.053 mm, but could still extract the defect features. Based on the THz-TDS reflection mode measurement principle, the thickness information of the panel, foam core, and web of the samples was calculated: the measurement error was no more than 0.870 mm for Sample #1 and no more than 0.270 mm for Sample #2, demonstrating the accuracy of THz-TDS in measuring the dimensions of sandwich panel structures. In general, THz technology shows potential for detecting internal defects and performing dimensional measurements in complex structures. With the advancement of portable devices and enhancements in detection speed, real-time on-site detection is anticipated in the future.

2.
Sensors (Basel) ; 22(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35214544

RESUMO

Ventricular assist devices or total artificial hearts can be used to save patients with heart failure when there are no donors available for heart transplantation. Blood pumps are integral parts of such devices, but traditional axial flow blood pumps have several shortcomings. In particular, they cause hemolysis and thrombosis due to the mechanical contact and wear of the bearings, and they cause blood stagnation due to the separation of the front and rear guide wheel hubs and the impeller hub. By contrast, the implantable axial flow, maglev blood pump has the characteristics of no mechanical contact, no lubrication, low temperature rise, low hemolysis, and less thrombosis. Extensive studies of axial flow, maglev blood pumps have shown that these pumps can function in laminar flow, transitional flow, and turbulent flow, and the working state and performance of such pumps are determined by their support mechanisms and flow channel. Computational fluid dynamics (CFD) is an effective tool for understanding the physical and mechanical characteristics of the blood pump by accurately and effectively revealing the internal flow field, pressure-flow curve, and shear force distribution of the blood pump. In this study, magnetic levitation supports were used to reduce damages to the blood and increase the service life of the blood pump, and a conical impeller hub was used to reduce the speed, volume, and power consumption of the blood pump, thereby facilitating implantation. CFD numerical simulation was then carried out to optimize the structural parameters of the conical axial maglev blood pump, predict the hemolysis performance of the blood pump, and match the flow channel and impeller structure. An extracorporeal circulation simulation platform was designed to test whether the hydraulic characteristics of the blood pump met the physiological requirements. The results showed that the total pressure distribution in the blood pump was reasonable after optimization, with a uniform pressure gradient, and the hemolysis performance was improved.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Simulação por Computador , Desenho de Equipamento , Hemólise , Humanos , Hidrodinâmica
3.
Sensors (Basel) ; 22(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36433288

RESUMO

The Maglev motor has the characteristics of high-speed and high-power density, and is widely used in compressors, molecular pumps and other high-speed rotating machinery. With the requirements of miniaturization and high speed of rotating machinery, the rotor of the maglev motor will operate above the bending critical speed, and the critical vibration control of the flexible rotor is facing challenges. In order to solve the problem of the critical vibration suppression of the maglev high-speed motor, the system model of the maglev motor is established, the rotordynamics of the flexible rotor are analyzed and the rotor model is modal truncated to reduce the order. Then, the µ-controller is designed, and the weighting functions are designed to deal with the modal uncertainty. Finally, an experimental platform of the maglev motor with the flexible rotor is built to verify the effect of the µ-control on the suppression of the critical vibration of the maglev rotor.


Assuntos
Coração Auxiliar , Vibração , Desenho de Equipamento , Magnetismo , Modalidades de Fisioterapia
4.
Sensors (Basel) ; 22(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35458996

RESUMO

At present, magnetic bearings are a better energy-saving choice than mechanical bearings in industrial applications. However, there are strongly coupled characteristics in magnetic bearing-rotor systems with redundant structures, and uncertain disturbances in the electrical system as well as external disturbances, and these unfavorable factors degrade the performance of the system. To improve the anti-interference performance of magnetic bearing systems, this paper proposes the inverse of the current distribution matrix W-1 meaning that the active disturbance rejection control simulation model can be carried out without neglecting the current of each coil. Firstly, based on the working mechanism of magnetic bearings with redundant structures and the nonlinear electromagnetic force model, the current and displacement stiffness models of magnetic bearings are established, and a dynamic model of the rotor is constructed. Then, according to the dynamic model of the rotor and the mapping relationship between the current of each coil and the electromagnetic force of the magnetic bearing, we established the equivalent control loop of the magnetic bearing-rotor system with redundant structures. Finally, on the basis of the active disturbance rejection control (ADRC) strategy, we designed a linear active disturbance rejection controller (LADRC) for magnetic bearings with redundant structures under the condition of no coil failure, and a corresponding simulation was carried out. The results demonstrate that compared to PID+current distribution control strategy, the LADRC+current distribution control strategy proposed in this paper is able to effectively improve the anti-interference performance of the rotors supported by magnetic bearings with redundant structures.

5.
Sensors (Basel) ; 21(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34450844

RESUMO

Fault tolerance is one of the effective methods to improve the reliability of magnetic bearings, and the redundant magnetic bearing provides a feasible measure for fault-tolerant control. The linearization and accuracy of the electromagnetic force (EMF) from the redundant structures is crucial for designing fault-tolerant controllers. In the magnetic bearing with a redundant structure, the current distribution matrix W is an important factor that affects the accuracy of EMF. In this paper, we improved the accuracy of the EMF model and took the eight-pole symmetrical radial magnetic bearing as the research object. The corresponding displacement compensation matrices have been calculated for the different coils that fail in the magnetic bearing while the rotor is at the non-equilibrium position. Then, we propose a fault-tolerant control strategy that includes displacement compensation. The rigid body dynamics model of the rotor, supported by magnetic bearings with redundant structures, is established. Moreover, to verify the effectiveness of the proposed control strategy, we combined the rigid body dynamics model of the rotor with a fault-tolerant control strategy, and the corresponding simulation has been carried out. In the case of disturbance force and some coils fail in magnetic bearing and compared with the fault-tolerant control that absents the displacement compensation factors. The simulations demonstrate the disturbance rejection of magnetically levitated rotor system can be enhanced. The robustness of the rotor has been improved with the fault-tolerant control strategy proposed in this paper.

6.
ISA Trans ; 140: 293-308, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37414593

RESUMO

Fault-tolerant control of active magnetic bearing (AMB) systems with redundant electromagnetic actuators (EMAs) based on generalized bias current linearization has become a practical technique to address EMA/amplifier faults. In this method, the configuration of multi-channel EMAs involves solving a high-dimensional and nonlinear problem containing complex constraints offline. This article develops a general framework for the EMAs multi-objective optimization configuration (MOOC) by combining the non-dominated sorting genetic algorithm III (NSGA-III) and the sequential quadratic programming (SQP) with the designing of objectives, handling of constraints, consideration of the iterative efficiency and the diversity of solutions. The numerical simulation results confirm the feasibility of the framework for searching the non-inferior configurations and reveal the function mechanism that intermediate variables of the nonlinear optimization model on AMB performance. Finally, the best configurations identified using the technique for order preference by similarity to an ideal solution (TOPSIS) are applied to the 4-DOF AMB experimental platform. Experiments further indicate that the work in this paper provides a novel way with good performance and high reliability for solving the EMAs MOOC problem in fault-tolerant control of AMB systems.

7.
Heliyon ; 9(3): e14191, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938450

RESUMO

This paper describes one-dimensional periodic shell structures that have variable cross sections, a new type of periodic shell structures made from photopolymer. This paper will discuss the stiffness of periodic sub-cells that have variable cross sections and the band gaps of Bragg scattering shell structures based on numerical analysis and a series of experiments. This paper uses the Bloch theorem and lumped-mass method to create a band gap model for periodic shell structures. In this paper, an equivalent stiffness model for sub-cells is also created based on the principle of superposition and validated by experiments. Numerical studies and experiments are conducted to examine the effects of geometrical parameters, number of sub-cells, and stiffness of sub-cells on band gaps of one-dimensional periodic shell structures and to test the effectiveness of the models. The findings in this paper prove that by varying the stiffness of sub-cells under a fixed lattice constant, band gaps of one-dimensional periodic shell structures can be decreased. The findings also confirmed that the initial band gap of one-dimensional periodic shell structures can be lowered by increasing the number of sub-cells in a period. Unlike other types of Bragg scattering periodic structures, one-dimensional periodic shell structures allow their longitudinal band gaps to be adjusted under a fixed lattice constant. Those findings serve as a theoretical foundation for the application of Bragg scattering periodic shell structures in low-frequency vibration.

8.
J Hazard Mater ; 386: 121984, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31896008

RESUMO

The development of phosphorus-containing flame retardants combining good compatibility with matrix, low curing temperature, and mechanically reinforcing effect has remained a major challenge. Herein, we reported the synthesis of a liquid flame-retardant curing agent (DA) via the nucleophilic substitution between diphenylphosphinic chloride and 1-(3-aminopropyl)-imidazole (AI). DA exhibited good blending and latency towards epoxy resin (EP) at room temperature. According to DSC studies, DA could rapidly cure EP at moderate temperature. Compared with EP/AI sample, EP/DA samples displayed comparable or higher glass transition temperature (Tg) and enhanced mechanical properties due to the introduction of rigid diphenylphosphinyl group and improved cross-linking density. Moreover, DA improved the flame-retardant performances of EP thermoset. For instance, the LOI and UL94 rating of EP/DA-16 sample achieved 37.2 % and V-0, respectively. In addition, the peak of heat release rate (PHRR), average of heat release rate (AHRR), fire growth rate (FIGRA), and total heat release (THR) for EP/DA-16 sample reduced by 32 %, 42 %, 28 % and 27 % in comparison to EP/AI sample, respectively. DA was characterized by its good compatibility with EP, moderate curing temperature, fast curing rate, suitable thermal latency, mechanical reinforcing and flame-retardant effects, and thus it had a broad application prospect in various industrial fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA