Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
BMC Infect Dis ; 21(1): 783, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372767

RESUMO

BACKGROUND: The novel coronavirus disease 2019 (COVID-19) spreads rapidly among people and causes a pandemic. It is of great clinical significance to identify COVID-19 patients with high risk of death. METHODS: A total of 2169 adult COVID-19 patients were enrolled from Wuhan, China, from February 10th to April 15th, 2020. Difference analyses of medical records were performed between severe and non-severe groups, as well as between survivors and non-survivors. In addition, we developed a decision tree model to predict death outcome in severe patients. RESULTS: Of the 2169 COVID-19 patients, the median age was 61 years and male patients accounted for 48%. A total of 646 patients were diagnosed as severe illness, and 75 patients died. An older median age and a higher proportion of male patients were found in severe group or non-survivors compared to their counterparts. Significant differences in clinical characteristics and laboratory examinations were found between severe and non-severe groups, as well as between survivors and non-survivors. A decision tree, including three biomarkers, neutrophil-to-lymphocyte ratio, C-reactive protein and lactic dehydrogenase, was developed to predict death outcome in severe patients. This model performed well both in training and test datasets. The accuracy of this model were 0.98 in both datasets. CONCLUSION: We performed a comprehensive analysis of COVID-19 patients from the outbreak in Wuhan, China, and proposed a simple and clinically operable decision tree to help clinicians rapidly identify COVID-19 patients at high risk of death, to whom priority treatment and intensive care should be given.


Assuntos
COVID-19 , Adulto , China/epidemiologia , Árvores de Decisões , Humanos , Recém-Nascido , Masculino , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2
2.
Pharm Biol ; 59(1): 1585-1593, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34808069

RESUMO

CONTEXT: Previous studies indicate that compound Danshen Dripping Pill (CDDP) improves the adaptation to high-altitude exposure. However, its mechanism of action is not clear. OBJECTIVE: To explore the protective effect of CDDP on hypobaric hypoxia (HH) and its possible mechanism. MATERIALS AND METHODS: A meta-analysis of 1051 human volunteers was performed to evaluate the effectiveness of CDDP at high altitudes. Male Sprague-Dawley rats were randomized into 5 groups (n = 6): control at normal pressure, model, CDDP-170 mg/kg, CDDP-340 mg/kg and acetazolamide groups. HH was simulated at an altitude of 5500 m for 24 h. Animal blood was collected for arterial blood-gas analysis and cytokines detection and their organs were harvested for pathological examination. Expression levels of AQP1, NF-κB and Nrf2 were determined by immunohistochemical staining. RESULTS: The meta-analysis data indicated that the ratio between the combined RR of the total effective rate and the 95% CI was 0.23 (0.06, 0.91), the SMD and 95% CI of SO2 was 0.37 (0.12, 0.62). Pre-treatment of CDDP protected rats from HH-induced pulmonary edoema and heart injury, left-shifted oxygen-dissociation curve and decreased P50 (30.25 ± 3.72 vs. 37.23 ± 4.30). Mechanistically, CDDP alleviated HH-reinforced ROS by improving SOD and GPX1 while inhibiting pro-inflammatory cytokines and NF-κB expression. CDDP also decreased HH-evoked D-dimer, erythrocyte aggregation and blood hemorheology, promoting AQP1 and Nrf2 expression. DISCUSSION AND CONCLUSIONS: Pre-treatment with CDDP could prevent HH-induced tissue damage, oxidative stress and inflammatory response. Suppressed NF-κB and up-regulated Nrf2 might play significant roles in the mechanism of CDDP.


Assuntos
Doença da Altitude/tratamento farmacológico , Canfanos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Acetazolamida/farmacologia , Animais , Gasometria , Canfanos/administração & dosagem , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/administração & dosagem , Humanos , Inflamação/etiologia , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Panax notoginseng , Ensaios Clínicos Controlados Aleatórios como Assunto , Ratos , Ratos Sprague-Dawley , Salvia miltiorrhiza
3.
Acta Pharmacol Sin ; 41(11): 1457-1464, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32424239

RESUMO

Mitsugumin 53 (MG53) is a tripartite motif family protein that has been reported to attenuate injury via membrane repair in different organs. Contrast-induced acute kidney injury (CI-AKI) is a common complication caused by the administration of iodinated contrast media (CM). While the cytotoxicity induced by CM leading to tubular cell death may be initiated by cell membrane damage, we wondered whether MG53 alleviates CI-AKI. This study was designed to investigate the effect of MG53 on CI-AKI and the underlying mechanism. A rat model of CI-AKI was established, and CI-AKI induced the translocation of MG53 from serum to injury sites on the renal proximal tubular (RPT) epithelia, as illustrated by immunoblot analysis and immunohistochemical staining. Moreover, pretreatment of rats with recombinant human MG53 protein (rhMG53, 2 mg/mL) alleviated iopromide-induced injury in the kidney, which was determined by measuring serum creatinine, blood urea nitrogen and renal histological changes. In vitro studies demonstrated that exposure of RPT cells to iopromide (20, 40, and 80 mg/mL) caused cell membrane injury and cell death, which were attenuated by rhMG53 (10 and 50 µg/mL). Mechanistically, MG53 translocated to the injury site on RPT cells and bound to phosphatidylserine to protect RPT cells from iopromide-induced injury. In conclusion, MG53 protects against CI-AKI through cell membrane repair and reducing cell apoptosis; therefore, rhMG53 might be a potential effective means to treat or prevent CI-AKI.


Assuntos
Injúria Renal Aguda/prevenção & controle , Apoptose/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Proteínas com Motivo Tripartido/uso terapêutico , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Animais , Membrana Celular/metabolismo , Células Epiteliais , Feminino , Humanos , Iohexol/análogos & derivados , Rim/patologia , Túbulos Renais Proximais/citologia , Masculino , Fosfatidilserinas/metabolismo , Substâncias Protetoras/metabolismo , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Proteínas com Motivo Tripartido/metabolismo
4.
Breast Cancer Res Treat ; 174(1): 65-78, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30450530

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, lacking effective targeted therapies, and whose underlying mechanisms are still unclear. The gene coding for Gametogenetin-binding protein (GGNBP2), also known as Zinc Finger Protein 403 (ZNF403), is located on chromosome 17q12-q23, a region known as a breast cancer susceptibility locus. We have previously reported that GGNBP2 functions as a tumor suppressor in estrogen receptor-positive breast cancer. The aim of this study was to evaluate the role and mechanisms of GGNBP2 in TNBC. METHODS: The effect of GGNBP2 on TNBC aggressiveness was investigated both in vitro and in vivo. The protein and mRNA expression levels were analyzed by western blotting and reverse transcription quantitative polymerase chain reaction, respectively. Fluorescence-activated cell sorting analysis was used to evaluate the cell cycle distribution and cell apoptosis. Immunohistochemistry was used to determine the expression of GGNBP2 in breast cancer tissues. RESULTS: We find that GGNBP2 expression decreases in TNBC tissues and is associated with the outcome of breast cancer patients. Furthermore, experimental overexpression of GGNBP2 in MDA-MB-231 and Cal51 cells suppresses cell proliferation, migration and invasion, reduces the cancer stem cell subpopulation, and promotes cell apoptosis in vitro as well as inhibits tumor growth in vivo. In these cell models, overexpression of GGNBP2 decreases the activation of IL-6/STAT3 signaling. CONCLUSION: Our data demonstrate that GGNBP2 suppresses cancer aggressiveness by inhibition of IL-6/STAT3 activation in TNBC.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Biomarcadores Tumorais/análise , Feminino , Xenoenxertos , Humanos , Estimativa de Kaplan-Meier , Camundongos , Camundongos Nus , Prognóstico , Transdução de Sinais/fisiologia , Neoplasias de Mama Triplo Negativas/metabolismo
5.
Breast Cancer Res Treat ; 167(2): 605-606, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29305809

RESUMO

In the original publication, Fig. 1 depicting the blot for EP300 in CAL51 cells (Fig. 1c) was unintentionally duplicated with that from MDA-MB-231 cells (Fig. 1d). The new figure given in this erratum depicts the correct EP300 blot in Fig. 1c.

6.
Cancer Sci ; 108(6): 1177-1184, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28301080

RESUMO

Hormone therapy has become one of the main strategies for breast cancer, however, many estrogen receptor (ER) positive patients end in tumor collapse due to initial or acquired resistance to hormone treatment, which includes Fulvestrant. Here we report that ErbB receptors and downstream PI3K/AKT and ERK pathway have been reactivated after treatment of Fulvestrant in ER positive MCF-7 and T47D cells, which are related to Fulvestrant resistance. HSP90 is a universally expressed chaperone protein and plays a vital role in both normal and cancer cells, HSP90 inhibitor AUY922 can reverse this feedback reactivation effect of Fulvestrant by targeting multiple proteins related in ErbB receptors, PI3K/AKT and ERK pathway, which is much better than single targeting inhibitors. We also consolidate these effects in human fresh breast tumors. Combination of AUY922 and Fulvestrant may become a promising therapy strategy in breast cancer treatment.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Estradiol/análogos & derivados , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Isoxazóis/farmacologia , Resorcinóis/farmacologia , Antineoplásicos Hormonais/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estradiol/farmacologia , Feminino , Fulvestranto , Humanos , Células MCF-7 , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Breast Cancer Res Treat ; 163(3): 461-474, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28341962

RESUMO

PURPOSE: We have previously described a novel pathway controlling drug resistance, epithelial-to-mesenchymal transition (EMT) and stemness in breast cancer cells. Upstream in the pathway, three miRs (miR-106b, miR-93 and miR-25) target EP300, a transcriptional activator of E-cadherin. Upregulation of these miRs leads to the downregulation of EP300 and E-cadherin with initiation of an EMT. However, miRs regulate the expression of many genes, and the contribution to EMT by miR targets other than EP300 cannot be ruled out. METHODS: We used lentiviruses expressing EP300-targeting shRNA to downregulate its expression in MCF-7 cells as well as an EP300-knocked-out colon carcinoma cell line. An EP300-expression plasmid was used to upregulate its expression in basal-like CAL51 and MDA-MB-231 breast cancer cells. Drug resistance was determined by short-term proliferation and long-term colony formation assays. Stemness was determined by tumour sphere formation in both soft agar and liquid cultures as well as by the expression of CD44/CD24/ALDH markers. Gene expression microarray analysis was performed in MCF-7 cells lacking EP300. EP300 expression was analysed by immunohistochemistry in 17 samples of metaplastic breast cancer. RESULTS: Cells lacking EP300 became more resistant to paclitaxel whereas EP300 overexpression increased their sensitivity to the drug. Expression of cancer stem cell markers, as well as tumour sphere formation, was also increased in EP300-depleted cells, and was diminished in EP300-overexpressing cells. The EP300-regulated gene signature highlighted genes associated with adhesion (CEACAM5), cytoskeletal remodelling (CAPN9), stemness (ABCG2), apoptosis (BCL2) and metastasis (TGFB2). Some genes in this signature were also validated in a previously generated EP300-depleted model of breast cancer using minimally transformed mammary epithelial cells. Importantly, two key genes in apoptosis and stemness, BCL2 and ABCG2, were also upregulated in EP300-knockout colon carcinoma cells and their paclitaxel-resistant derivatives. Immunohistochemical analysis demonstrated that EP300 expression was low in metaplastic breast cancer, a rare, but aggressive form of the disease with poor prognosis that is characterized by morphological and physiological features of EMT. CONCLUSIONS: EP300 plays a major role in the reprogramming events, leading to a more malignant phenotype with the acquisition of drug resistance and cell plasticity, a characteristic of metaplastic breast cancer.


Assuntos
Neoplasias da Mama/genética , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteína p300 Associada a E1A/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Calpaína/genética , Antígeno Carcinoembrionário/genética , Plasticidade Celular/genética , Feminino , Proteínas Ligadas por GPI/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lentivirus/genética , Células MCF-7 , Metástase Neoplásica , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Paclitaxel/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2/genética , Fator de Crescimento Transformador beta2/genética
8.
Breast Cancer Res Treat ; 158(2): 263-76, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27357812

RESUMO

Gametogenetin-binding protein 2 (GGNBP2) is encoded in human chromosome 17q12-q23, a region known as a breast and ovarian cancer susceptibility locus. GGNBP2, also referred to ZFP403, has a single C2H2 zinc finger and a consensus LxxLL nuclear receptor-binding motif. Here, we demonstrate that GGNBP2 expression is reduced in primary human breast tumors and in breast cancer cell lines, including T47D, MCF-7, LCC9, LY2, and MDA-MB-231 compared with normal, immortalized estrogen receptor α (ERα) negative MCF-10A and MCF10F breast epithelial cells. Overexpression of GGNBP2 inhibits the proliferation of T47D and MCF-7 ERα positive breast cancer cells without affecting MCF-10A and MCF10F. Stable GGNBP2 overexpression in T47D cells inhibits 17ß-estradiol (E2)-stimulated proliferation as well as migration, invasion, anchorage-independent growth in vitro, and xenograft tumor growth in mice. We further demonstrate that GGNBP2 protein physically interacts with ERα, inhibits E2-induced activation of estrogen response element-driven reporter activity, and attenuates ER target gene expression in T47D cells. In summary, our in vitro and in vivo findings suggest that GGNBP2 is a novel breast cancer tumor suppressor functioning as a nuclear receptor corepressor to inhibit ERα activity and tumorigenesis.


Assuntos
Neoplasias da Mama/metabolismo , Regulação para Baixo , Receptor alfa de Estrogênio/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Estradiol/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos , Transplante de Neoplasias , Elementos de Resposta/efeitos dos fármacos
9.
Cancer Sci ; 106(5): 642-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25702787

RESUMO

The epidermal growth factor receptor (EGFR)/PI3K/AKT signaling pathway aberrations play significant roles in breast cancer occurrence and development. However, the status of EGFR and AKT1 gene copy numbers remains unclear. In this study, we showed that the rates of EGFR and AKT1 gene copy number alterations were associated with the prognosis of breast cancer. Among 205 patients, high EGFR and AKT1 gene copy numbers were observed in 34.6% and 27.8% of cases by multi-gene fluorescence in situ hybridization, respectively. Co-heightened EGFR/AKT1 gene copy numbers were identified in 11.7% cases. No changes were found in 49.3% of patients. Although changes in EGFR and AKT1 gene copy numbers had no correlation with patients' age, tumor stage, histological grade and the expression status of other molecular makers, high EGFR (P = 0.0002) but not AKT1 (P = 0.1177) gene copy numbers correlated with poor 5-year overall survival. The patients with co-heightened EGFR/AKT1 gene copy numbers displayed a poorer prognosis than those with tumors with only high EGFR gene copy numbers (P = 0.0383). Both Univariate (U) and COX multivariate (C) analyses revealed that high EGFR and AKT1 gene copy numbers (P = 0.000 [U], P = 0.0001 [C]), similar to histological grade (P = 0.001 [U], P = 0.012 [C]) and lymph node metastasis (P = 0.046 [U], P = 0.158 [C]), were independent prognostic indicators of 5-year overall survival. These results indicate that high EGFR and AKT1 gene copy numbers were relatively frequent in breast cancer. Co-heightened EGFR/AKT1 gene copy numbers had a worse outcome than those with only high EGFR gene copy numbers, suggesting that evaluation of these two genes together may be useful for selecting patients for anti-EGFR-targeted therapy or anti-EGFR/AKT1-targeted therapy and for predicting outcomes.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Receptores ErbB/genética , Dosagem de Genes , Proteínas Proto-Oncogênicas c-akt/genética , Idoso , Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Hibridização in Situ Fluorescente/métodos , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Análise de Sobrevida
10.
Breast Cancer Res Treat ; 151(2): 269-80, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25900794

RESUMO

Multidrug resistance (MDR) remains one of the most significant obstacles in breast cancer treatment, and this process often involves dysregulation of a great number of microRNAs (miRNAs). Some miRNAs are indicators of drug resistance and confer resistance to chemotherapeutic drugs, although our understanding of this complex process is still incomplete. We have used a combination of miRNA profiling and real-time PCR in two drug-resistant derivatives of MCF-7 and Cal51 cells. Experimental modulation of miR expression has been obtained by retroviral transfection. Taxol and doxorubicin IC50 values were obtained by short-term drug sensitivity assays. Apoptosis was determined by flow cytometry after annexin V staining, by caspase 3/7 and caspase 9 activity assays and the levels of apoptosis-related proteins bcl-2 and bax by real-time PCR and Western blot. miR target was studied using transient transfection of luciferase constructs with the 3' untranslated regions (UTR) of target mRNAs. Small interfering RNA-mediated genetic knock-down was performed in MDR cells and its modulatory effect on apoptosis examined. The effect of miRNA on tumorigenicity and tumor drug response was studied in mouse xenografts. miRNA profiling of two drug-resistant breast cancer cell models indicated that miR-218 was down-regulated in both MCF-7/A02 and CALDOX cells. Ectopic expression of miR-218 resensitized both drug-resistant cell lines to doxorubicin and taxol due to an increase in apoptosis. miR-218 binds survivin (BIRC5) mRNA 3'-UTR and down-regulated reporter luciferase activity. Experimental down-regulation of survivin by RNA interference in drug-resistant cells did mimic the sensitization observed when miRNA-218 was up-regulated. In addition, resensitization to taxol was also observed in mouse tumor xenografts from cells over-expressing miR-218. miR-218 is involved in the development of MDR in breast cancer cells via targeting survivin and leading to evasion of apoptosis. Targeting miR-218 and survivin may thus provide a potential strategy for reversing drug resistance in breast cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Inibidoras de Apoptose/genética , MicroRNAs/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Sequência de Bases , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Camundongos , Paclitaxel/farmacologia , RNA Mensageiro/genética , Survivina , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Proc Natl Acad Sci U S A ; 109(41): 16558-63, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23012411

RESUMO

Nicastrin (NCT) is a crucial component of the γ-secretase (GS) enzyme, which prompted investigations into its biological role in cancer. We have previously shown that nicastrin is overexpressed in breast cancer (BC), conferring worse overall survival in invasive, ERα negative patients. Here, we used 2D and 3D Matrigel, anchorage-independent growth conditions and a breast cancer xenograft mouse model to assess the impact of nicastrin on breast cancer stem cell (BCSC) propagation and invasion in vitro and tumor growth in vivo. Stable knockdown of nicastrin in HCC1806 breast cancer cells reduced cell invasion by 51.4 ± 1.7%, accompanied by a morphological change to a rounded cell phenotype and down-regulation of vimentin, Snail, Twist, MMP2, and MMP9. We observed a reduction of the pool of CD44(+)/CD24(-) and ALDH1 high breast cancer stem cells by threefold and twofold, respectively, and a reduction by 2.6-fold of the mammospheres formation. Nicastrin overexpression in nontransformed MCF10A cells caused an induction of epithelial to mesenchymal regulators, as well as a fivefold increased ALDH1 activity, a threefold enrichment for CD44(+)/CD24(-) stem cells, and a 3.2-fold enhanced mammosphere-forming capacity. Using the γ-sescretase inhibiton, Notch1/4 siRNA, and Akt inhibition, we show that nicastrin regulates breast cancer stem cells partly through Notch1 and the Akt pathway. Exploiting serial dilution transplantation of the HCC1806 cells expressing nicastrin and HCC1806 stably depleted of nicastrin, in vivo, we demonstrate that nicastrin inhibition may be relevant for the reduced tumorigenicity of breast cancer cells. These data could serve as a benchmark for development of nicastrin-targeted therapies in breast cancer.


Assuntos
Secretases da Proteína Precursora do Amiloide/genética , Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Glicoproteínas de Membrana/genética , Células-Tronco Neoplásicas/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Técnicas de Cultura de Células , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Receptores Notch/genética , Receptores Notch/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transplante Heterólogo , Carga Tumoral/genética
12.
Zhonghua Yi Xue Za Zhi ; 95(40): 3308-12, 2015 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-26815355

RESUMO

OBJECTIVE: To investigatethe effect of NVP-BKM120 on the triple-negative breast cancer cell lines. METHODS: Breast cancer cell line MDA-MB-231 and Cal51 were divided into control group and experimental group. The inhibitory effects of BKM120 were evaluated by MTT assays. The drug effects on CSC population and characteristics were investigated through mammosphere formation assay and colony formation assay. Western blot was used to observe the expressionof related protein. The BALB/c mice were injected with stem cells (SCs) and different treatments were administered subsequently. RESULTS: In MDA-MB-231 cell lines, IC50 of BKM120 was (20.01±3.46) µmol/L for SCs and (3.07±0.14) µmol/L for total cells. BKM120 significantly inhibit the cell growth, in vitrocloning and microspheres formed of triple-negative breast cancer cells. BKM120 can inhibit tumor growth in nude mice without significant adverse reactions. CONCLUSION: BKM120 can significantly inhibit the proliferation of the triple-negative breast cancer cell lines.


Assuntos
Neoplasias de Mama Triplo Negativas , Aminopiridinas , Animais , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Morfolinas
13.
Breast Cancer Res Treat ; 143(2): 287-99, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24337682

RESUMO

Sorcin, a 22-kDa calcium-binding protein, renders cancer cells resistant to chemotherapeutic agents, thus playing an important role in multidrug resistance. As there is a clear association between drug resistance and an aggressive phenotype, we asked whether sorcin affects also the motility, invasion, and stem cell characteristics of cancer cells. We have used both RNA interference (transient and stable expression of hairpins) and a lentiviral expression vector to experimentally modulate sorcin expression in a variety of cells. We demonstrate that sorcin depletion in MDA-MB-231 breast cancer cells reduces the pool of CD44(+)/CD24(-) and ALDH1(high) cancer stem cells (CSCs) as well as mammosphere-forming capacity. We also observe that sorcin regulates epithelial-mesenchymal transition and CSCs partly through E-cadherin and vascular endothelial growth factor expression. This leads to the acquisition of an epithelial-like phenotype, attenuating epithelial-mesenchymal transition and suppression of metastases in nude mice. The sorcin-depleted phenotype can also be reproduced in lung adenocarcinoma A549 cells and lung fibrosarcoma HT1080 cells. In addition, overexpression of sorcin in MCF7 cells, which have low endogenous sorcin expression levels, increases their migration and invasion in vitro. This offers the rationale for the development of therapeutic strategies down-regulating sorcin expression for the treatment of cancer.


Assuntos
Adenocarcinoma/secundário , Neoplasias da Mama/genética , Proteínas de Ligação ao Cálcio/genética , Transição Epitelial-Mesenquimal/genética , Fibrossarcoma/secundário , Neoplasias Pulmonares/secundário , Adenocarcinoma/genética , Adenocarcinoma de Pulmão , Família Aldeído Desidrogenase 1 , Animais , Antibióticos Antineoplásicos/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Antígeno CD24/biossíntese , Movimento Celular/genética , Proliferação de Células , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Etoposídeo/uso terapêutico , Feminino , Fibrossarcoma/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores de Hialuronatos/biossíntese , Isoenzimas/biossíntese , Neoplasias Pulmonares/genética , Células MCF-7 , Camundongos , Camundongos Nus , Invasividade Neoplásica/genética , Neovascularização Patológica/genética , Interferência de RNA , RNA Interferente Pequeno , Retinal Desidrogenase/biossíntese , Esferoides Celulares/citologia , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética
14.
Phytomedicine ; 129: 155618, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678949

RESUMO

BACKGROUND: Vascular calcification refers to the abnormal accumulation of calcium in the walls of blood vessels and is a risk factor often overlooked in cardiovascular disease. However, there is currently no specific drug for treating vascular calcification. Compound Danshen Dripping Pill (CDDP) is widely used to treat cardiovascular diseases, but its effect on vascular calcification has not been reported. PURPOSE: We investigated the effects of CDDP on vascular calcification in ApoE-/- mice and in vitro and elucidated its mechanism of action. STUDY DESIGN: Firstly, we found that CDDP has the potential to improve calcification based on network pharmacology analysis. Then, we performed the following experiments: in vivo, ApoE-/- mice were fed a high-fat diet randomly supplemented with CDDP for 16 weeks. Atherosclerosis and vascular calcification were determined. In vitro, human aortic smooth muscle cells (HASMCs), human umbilical vein endothelial cells (HUVECs), and human aortic endothelial cells (HAECs) were used to determine the mechanisms for CDDP-inhibited vascular calcification. RESULTS: In this study, we observed that CDDP reduced intimal calcification in atherosclerotic lesions of ApoE-deficient mice fed a high-fat diet, as well as the calcification in cultured SMCs and ECs. Mechanistically, CDDP inhibited the Wnt/ß-catenin pathway by up-regulating the expression of DKK1 and LRP6, which are upstream inhibitors of Wnt, leading to a reduction in the expression of osteoblastic transition markers (ALP, OPN, BMP2, and RUNX2). Furthermore, CDDP enhanced the secretion of DKK1, which plays a role in mediating EC-SMC crosstalk in calcification. Additionally, VC contributes to vascular aging by inhibiting Sirt1 and increasing senescence parameters (SA-ß-gal, p21, and p16). However, CDDP reversed these changes by activating Sirt1. CDDP also reduced the levels of pro-inflammatory cytokines and the senescence-associated secretory phenotype in vivo and in vitro. CONCLUSIONS: Our study suggests that CDDP reduces vascular calcification by regulating the DKK1/LRP6/ß-catenin signaling pathway in ECs/SMCs and interactions with the crosstalk of ECs and SMCs. It also reduces the senescence of ECs/SMCs, contributing to the Sirt1 activation, indicating CDDP's novel role in ameliorating vascular calcification.


Assuntos
Aterosclerose , Dieta Hiperlipídica , Medicamentos de Ervas Chinesas , Células Endoteliais da Veia Umbilical Humana , Salvia miltiorrhiza , Calcificação Vascular , Animais , Calcificação Vascular/tratamento farmacológico , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Salvia miltiorrhiza/química , Masculino , Dieta Hiperlipídica/efeitos adversos , Aterosclerose/tratamento farmacológico , Camundongos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Sirtuína 1/metabolismo , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Apolipoproteínas E/genética , Farmacologia em Rede , Via de Sinalização Wnt/efeitos dos fármacos , Aorta/efeitos dos fármacos , Canfanos , Peptídeos e Proteínas de Sinalização Intercelular , Panax notoginseng
15.
Comput Struct Biotechnol J ; 23: 506-519, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38261917

RESUMO

Alzheimer's disease is a neurodegenerative disease that leads to dementia and poses a serious threat to the health of the elderly. Traditional Chinese medicine (TCM) presents as a promising novel therapeutic therapy for preventing and treating dementia. Studies have shown that natural products derived from kidney-tonifying herbs can effectively inhibit AD. Furthermore, endoplasmic reticulum (ER) stress is a critical factor in the pathology of AD. Regulation of ER stress is a crucial approach to prevent and treat AD. Thus, in this study, we first collected kidney-tonifying herbs, integrated chemical ingredients from multiple TCM databases, and constructed a comprehensive drug-target network. Subsequently, we employed the endophenotype network (network proximity) method to identify potential active ingredients in kidney-tonifying herbs that prevented AD via regulating ER stress. By combining the predicted outcomes, we discovered that 32 natural products could ameliorate AD pathology via regulating ER stress. After a comprehensive evaluation of the multi-network model and systematic pharmacological analyses, we further selected several promising compounds for in vitro testing in the APP-SH-SY5Y cell model. Experimental results showed that echinacoside and danthron were able to effectively reduce ER stress-mediated neuronal apoptosis by inhibiting the expression levels of BIP, p-PERK, ATF6, and CHOP in APP-SH-SY5Y cells. Overall, this study utilized the endophenotype network to preliminarily decipher the effective material basis and potential molecular mechanism of kidney-tonifying Chinese medicine for prevention and treatment of AD.

16.
Phytomedicine ; 129: 155686, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759346

RESUMO

BACKGROUND: Tourette syndrome (TS) represents a neurodevelopmental disorder characterized by an uncertain etiology and influencing factors. Frequently, it co-occurs with conditions such as attention deficit hyperactivity disorder, obsessive-compulsive disorder, and sleep disturbances, which have garnered substantial attention from the research community in recent years. Clinical trials have demonstrated that Shaoma Zhijing Granules (SMZJG, 5-ling granule, also known as TSupport or T92 under U.S. development), a traditional Chinese medicine compound, is an effective treatment for TS. PURPOSE: To conduct scientometric analysis on developing trends, research countries and institutions, current status, hot spots of TS and discuss the underlying mechanisms of SMZJG and its main components on TS. The aim is to provide valuable reference for ongoing clinical and basic research on TS and SMZJG. STUDY DESIGN & METHODS: Using Tourette syndrome, SMZJG and its main components along with their synonyms as keywords, we conducted a comprehensive search across major scientific databases including the Web of Science Core Collection, PubMed and China National Knowledge Infrastructure (CNKI) databases. A total of 5952 references and 99 patents were obtained. Among these, 5039 articles and reviews, as well as 54 patents were analyzed by Citespace and VOSviewer software. RESULTS: The available evidence indicates that the SMZJG's components likely exert their mechanisms in treating TS by regulating the dopaminergic pathway system, neurotransmitter imbalances, reducing neuroinflammation, promoting the repair of nerve damage and improving sleep disorders. CONCLUSION: This comprehensive analysis lays the foundation for an extensive exploration of the feasibility and clinical applications of SMZJG in TS treatment.


Assuntos
Medicamentos de Ervas Chinesas , Síndrome de Tourette , Síndrome de Tourette/tratamento farmacológico , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa/métodos , Animais
17.
Front Cardiovasc Med ; 10: 1168730, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283584

RESUMO

Background: Long-term use of nitrates for treating stable angina pectoris (SAP) may lead to patients' tolerance to nitrates. As a traditional Chinese medicine, Compound danshen dropping pills (CDDP) is beneficial for patients with SAP. This study aimed to critically assess the efficacy and safety of CDDP vs. nitrates for SAP. Methods: PubMed, Embase, Web of Science, Cochrane library, CNKI, Wanfang Digital Periodicals, and Chinese Science and Technology Periodicals database were searched from inception to April 2023. Randomized controlled trials (RCTs) comparing CDDP with nitrates for SAP were included. The meta-analysis was conducted to estimate the pooled effect. Results: Twenty-nine studies were included for the statistical analysis. The meta-analyses with the random-effect model indicated that CDDP could significantly increase the effective rate in symptom improvement compared with nitrates (Pooled 9 RCTs, OR = 1.95, 95% CI: 1.25-3.05, P = 0.003, duration of 4 weeks; Pooled 4 RCTs, OR = 3.45, 95% CI: 1.84-6.48, P = 0.0001, duration of 6 weeks; Pooled 13 RCTs, OR = 4.02, 95% CI: 2.14-7.57, P < 0.0001, duration of 8 weeks). The meta-analyses with the random-effect model indicated that CDDP could significantly increase the effective rate in electrocardiogram improvement compared with nitrates (Pooled 5 RCTs, OR = 1.60, 95% CI: 1.02-2.52, P = 0.04, duration of 4 weeks; Pooled 3 RCTs, OR = 2.47, 95% CI: 1.60-3.82, P < 0.0001, duration of 6 weeks; Pooled 11 RCTs, OR = 3.43, 95% CI: 2.68-4.38, P < 0.00001, duration of 8 weeks). The incidence of adverse drug reactions in the CDDP group was lower than that in the nitrates group (Pooled 23 RCTs, OR = 0.15, 95% CI: 0.1-0.21, P < 0.00001). The results of the meta-analyses with fixed-effect model were similar with above results. The levels of the evidence ranged from very low to low. Conclusion: The present study suggests that CDDP with the duration of at least 4 weeks can be considered as an alternative to nitrates for treating SAP. However, more high-quality RCTs are still needed to confirm these findings. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022352888, identifier [CRD42022352888].

18.
J Ethnopharmacol ; 315: 116673, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37268257

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine theory believes that qi deficiency and blood stasis are the key pathogenesis of heart failure with preserved ejection fraction (HFpEF). As a representative prescription for replenishing qi and activating blood, QiShenYiQi dripping pills (QSYQ) has been used for treating heart diseases. However, the pharmacological mechanism of QSYQ in improving HFpEF is not well understood. AIM OF THE STUDY: The objective of the study is to investigate the cardioprotective effect and mechanism of QSYQ in HFpEF using the phenotypic dataset of HFpEF. MATERIALS AND METHODS: HFpEF mouse models established by feeding mice combined high-fat diet and Nω-nitro-L-arginine methyl ester drinking water were treated with QSYQ. To reveal causal genes, we performed a multi-omics study, including integrative analysis of transcriptomics, proteomics, and metabolomics data. Moreover, adeno-associated virus (AAV)-based PKG inhibition confirmed that QSYQ mediated myocardial remodeling through PKG. RESULTS: Computational systems pharmacological analysis based on human transcriptome data for HFpEF showed that QSYQ could potentially treat HFpEF through multiple signaling pathways. Subsequently, integrative analysis of transcriptome and proteome showed alterations in gene expression in HFpEF. QSYQ regulated genes involved in inflammation, energy metabolism, myocardial hypertrophy, myocardial fibrosis, and cGMP-PKG signaling pathway, confirming its function in the pathogenesis of HFpEF. Metabolomics analysis revealed fatty acid metabolism as the main mechanism by which QSYQ regulates HFpEF myocardial energy metabolism. Importantly, we found that the myocardial protective effect of QSYQ on HFpEF mice was attenuated after RNA interference-mediated knock-down of myocardial PKG. CONCLUSION: This study provides mechanistic insights into the pathogenesis of HFpEF and molecular mechanisms of QSYQ in HFpEF. We also identified the regulatory role of PKG in myocardial stiffness, making it an ideal therapeutic target for myocardial remodeling.


Assuntos
Insuficiência Cardíaca , Humanos , Camundongos , Animais , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Volume Sistólico , Multiômica , Miocárdio/patologia
19.
Phytomedicine ; 119: 155023, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37586159

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder with no effective cure. Targeting endoplasmic reticulum (ER) stress pathway may offer a novel approach to ameliorate cognitive deficits in AD. Bushen-Yizhi formula (BSYZ), a traditional Chinese medicine (TCM) prescription, has shown potential benefits for AD. To facilitate the development of new therapeutic agents for AD, it is important to identify the active components and the underlying mechanisms of BSYZ against AD. PURPOSE: The aim of this study was to systematically screen the active components of BSYZ that could improve learning and memory impairment in AD by modulating ER stress pathway. METHODS: A drug-target (D-T) network was constructed to analyze the herbal components of BSYZ. Network proximity method was used to identify the potential anti-AD components that targeted ER stress and evaluate their synergistic effects. The absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties and the literature evidence were considered to select promising candidates for further validation. The selected components were tested in vitro using an AD cell model (APPswe-SH-SY5Y). In vivo anti-AD effects of the components were assessed in APP/PS1 double-transgenic mice. RESULTS: 58 potential anti-AD components targeting ER stress were detected by network proximity analysis, and 13 out of them were selected based on ADMET properties and literature evidence. In vitro experiments confirmed that 5 components, namely gomisin B, ß-Carotene, imperatorin, chrysophanol, and osthole (OST), exhibited anti-AD effects on the APPswe-SH-SY5Y model. Moreover, network proximity analysis suggested that OST and Gomisin B might have synergistic effects on modulating ER stress. In vivo experiments demonstrated that OST, Gomisin B, OST+Gomisin B, and BSYZ all improved learning and memory function in APP/PS1 mice. Gomisin B and OST also restored cellular morphology and tissue structure in APP/PS1 mice. Thioflavine-S (Th-S) staining revealed that they reduced amyloid plaque deposition in the brain tissue of AD model mice. The qPCR results indicated that BSYZ, OST, and Gomisin B differentially regulated IRE1α, PERK, EIF2α, DDIT3, and Caspase 12 expression levels, while the OST and Gomisin B co-administration group showed better efficacy. This trend was further confirmed by immunofluorescence experiments. CONCLUSION: This study identified the active components of BSYZ that could ameliorate learning and memory impairment in AD by targeting ER stress pathway. OST and Gomisin B exhibited synergistic effects on modulating ER stress and reducing amyloid plaque deposition in vivo. Overall, our study elucidated the molecular mechanisms of BSYZ and its active components in attenuating AD symptoms which suggested the therapeutic potential of TCM for AD.


Assuntos
Doença de Alzheimer , Neuroblastoma , Camundongos , Humanos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Endorribonucleases , Placa Amiloide , Proteínas Serina-Treonina Quinases , Camundongos Transgênicos , Estresse do Retículo Endoplasmático , Modelos Animais de Doenças , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide
20.
Acta Pharm Sin B ; 13(3): 1036-1052, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36970211

RESUMO

Heart failure is the leading cause of death worldwide. Compound Danshen Dripping Pill (CDDP) or CDDP combined with simvastatin has been widely used to treat patients with myocardial infarction and other cardiovascular diseases in China. However, the effect of CDDP on hypercholesterolemia/atherosclerosis-induced heart failure is unknown. We constructed a new model of heart failure induced by hypercholesterolemia/atherosclerosis in apolipoprotein E (ApoE) and LDL receptor (LDLR) dual deficient (ApoE-/-LDLR-/-) mice and investigated the effect of CDDP or CDDP plus a low dose of simvastatin on the heart failure. CDDP or CDDP plus a low dose of simvastatin inhibited heart injury by multiple actions including anti-myocardial dysfunction and anti-fibrosis. Mechanistically, both Wnt and lysine-specific demethylase 4A (KDM4A) pathways were significantly activated in mice with heart injury. Conversely, CDDP or CDDP plus a low dose of simvastatin inhibited Wnt pathway by markedly up-regulating expression of Wnt inhibitors. While the anti-inflammation and anti-oxidative stress by CDDP were achieved by inhibiting KDM4A expression and activity. In addition, CDDP attenuated simvastatin-induced myolysis in skeletal muscle. Taken together, our study suggests that CDDP or CDDP plus a low dose of simvastatin can be an effective therapy to reduce hypercholesterolemia/atherosclerosis-induced heart failure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA