Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Anal Chem ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334074

RESUMO

Chemoresistance to triple-negative breast cancer (TNBC) is a critical issue in clinical practice. Lipid metabolism takes a unique role in breast cancer cells; especially, unsaturated lipids involving cell membrane fluidity and peroxidation are highly remarked. At present, for the lack of a high-resolution molecular recognition platform at the single-cell level, it is still hard to systematically study chemoresistance heterogeneity based on lipid unsaturation proportion. By designing a single-cell mass spectrometry workflow based on CyESI-MS, we profiled the unsaturated lipids of TNBC cells to evaluate lipidomic remodeling under platinum stress. Profiling revealed the heterogeneity of the polyunsaturated lipid proportion of TNBC cells under cisplatin treatment. A cluster of cells identified by polyunsaturated lipid accumulation was found to be involved in platinum sensitivity. Furthermore, we found that the chemoresistance of TNBC cells could be regulated by fatty acid supplementation, which determinates the composition of unsaturated lipids. These discoveries provide insights for monitoring and controlling cellular unsaturated lipid proportions to overcome chemoresistance in breast cancer.

2.
Cereb Cortex ; 33(6): 3026-3042, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35764255

RESUMO

Ventromedial prefrontal cortex (vmPFC) processes many critical brain functions, such as decision-making, value-coding, thinking, and emotional arousal/recognition, but whether vmPFC plays a role in sleep-wake promotion circuitry is still unclear. Here, we find that photoactivation of dorsomedial hypothalamus (DMH)-projecting vmPFC neurons, their terminals, or their postsynaptic DMH neurons rapidly switches non-rapid eye movement (NREM) but not rapid eye movement sleep to wakefulness, which is blocked by photoinhibition of DMH outputs in lateral hypothalamus (LHs). Chemoactivation of DMH glutamatergic but not GABAergic neurons innervated by vmPFC promotes wakefulness and suppresses NREM sleep, whereas chemoinhibition of vmPFC projections in DMH produces opposite effects. DMH-projecting vmPFC neurons are inhibited during NREM sleep and activated during wakefulness. Thus, vmPFC neurons innervating DMH likely represent the first identified set of cerebral cortical neurons for promotion of physiological wakefulness and suppression of NREM sleep.


Assuntos
Sono REM , Sono , Sono/fisiologia , Sono REM/fisiologia , Nível de Alerta , Vigília/fisiologia , Neurônios GABAérgicos/fisiologia
3.
J Neurosci ; 42(44): 8343-8360, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36167784

RESUMO

Although recent studies have revealed an involvement of hippocampal interneurons in learning the association among time-separated events, its underlying cellular mechanisms remained not fully clarified. Here, we combined multichannel recording and optogenetics to elucidate how the hippocampal parvalbumin-expressing interneurons (PV-INs) support associative learning. To address this issue, we trained the mice (both sexes) to learn hippocampus-dependent trace eyeblink conditioning (tEBC) in which they associated a light flash conditioned stimulus (CS) with a corneal air puff unconditioned stimuli (US) separated by a 250 ms time interval. We found that the hippocampal PV-INs exhibited learning-associated sustained activity at the early stage of tEBC acquisition. Moreover, the PV-IN sustained activity was positively correlated with the occurrence of conditioned eyeblink responses at the early learning stage. Suppression of the PV-IN sustained activity impaired the acquisition of tEBC, whereas the PV-IN activity suppression had no effect on the acquisition of delay eyeblink conditioning, a hippocampus-independent learning task. Learning-associated augmentation in the excitatory pyramidal cell-to-PVIN drive may contribute to the formation of PV-IN sustained activity. Suppression of the PV-IN sustained activity disrupted hippocampal gamma but not theta band oscillation during the CS-US interval period. Gamma frequency (40 Hz) activation of the PV-INs during the CS-US interval period facilitated the acquisition of tEBC. Our current findings highlight the involvement of hippocampal PV-INs in tEBC acquisition and reveal insights into the PV-IN activity kinetics which are of key importance for the hippocampal involvement in associative learning.SIGNIFICANCE STATEMENT The cellular mechanisms underlying associative learning have not been fully clarified. Previous studies focused on the involvement of hippocampal pyramidal cells in associative learning, whereas the activity and function of hippocampal interneurons were largely neglected. We herein demonstrated the hippocampal PV-INs exhibited learning-associated sustained activity, which was required for the acquisition of tEBC. Furthermore, we showed evidence that the PV-IN sustained activity might have arisen from the learning-associated augmentation in excitatory pyramidal cell-to-PVIN drive and contributed to learning-associated augmentation in gamma band oscillation during tEBC acquisition. Our findings provide more mechanistic understanding of the cellular mechanisms underlying the hippocampal involvement in associative learning.


Assuntos
Condicionamento Palpebral , Parvalbuminas , Masculino , Feminino , Camundongos , Animais , Condicionamento Palpebral/fisiologia , Interneurônios , Hipocampo/fisiologia , Piscadela
4.
Hum Brain Mapp ; 44(16): 5387-5401, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37605831

RESUMO

Gene expression plays a critical role in the pathogenesis of Parkinson's disease (PD). How gene expression profiles are correlated with functional-metabolic architecture remains obscure. We enrolled 34 PD patients and 25 age-and-sex-matched healthy controls for simultaneous 18 F-FDG-PET/functional MRI scanning during resting state. We investigated the functional gradients and the ratio of standard uptake value. Principal component analysis was used to further combine the functional gradients and glucose metabolism into functional-metabolic architecture. Using partial least squares (PLS) regression, we introduced the transcriptomic data from the Allen Institute of Brain Sciences to identify gene expression patterns underlying the affected functional-metabolic architecture in PD. Between-group comparisons revealed significantly higher gradient variation in the visual, somatomotor, dorsal attention, frontoparietal, default mode, and subcortical network (pFDR < .048) in PD. Increased FDG-uptake was found in the somatomotor and ventral attention network while decreased FDG-uptake was found in the visual network (pFDR < .008). Spatial correlation analysis showed consistently affected patterns of functional gradients and metabolism (p = 2.47 × 10-8 ). PLS analysis and gene ontological analyses further revealed that genes were mainly enriched for metabolic, catabolic, cellular response to ions, and regulation of DNA transcription and RNA biosynthesis. In conclusion, our study provided genetic pathological mechanism to explain imaging-defined brain functional-metabolic architecture of PD.


Assuntos
Fluordesoxiglucose F18 , Doença de Parkinson , Humanos , Fluordesoxiglucose F18/metabolismo , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Encéfalo/patologia , Neuroimagem , Imageamento por Ressonância Magnética , Expressão Gênica
5.
Cereb Cortex ; 32(4): 824-838, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34383018

RESUMO

Sleep deprivation (SD) causes deficits in off-line memory consolidation, but the underlying network oscillation mechanisms remain unclear. Hippocampal sharp wave ripple (SWR) oscillations play a critical role in off-line memory consolidation. Therefore, we trained mice to learn a hippocampus-dependent trace eyeblink conditioning (tEBC) task and explored the influence of 1.5-h postlearning SD on hippocampal SWRs and related spike dynamics during recovery sleep. We found an increase in hippocampal SWRs during postlearning sleep, which predicted the consolidation of tEBC in conditioned mice. In contrast, sleep-deprived mice showed a loss of tEBC learning-induced increase in hippocampal SWRs during recovery sleep. Moreover, the sleep-deprived mice exhibited weaker reactivation of tEBC learning-associated pyramidal cells in hippocampal SWRs during recovery sleep. In line with these findings, tEBC consolidation was impaired in sleep-deprived mice. Furthermore, sleep-deprived mice showed augmented fast excitation from pyramidal cells to interneurons and enhanced participation of interneurons in hippocampal SWRs during recovery sleep. Among various interneurons, parvalbumin-expressing interneurons specifically exhibited overexcitation during hippocampal SWRs. Our findings suggest that altered hippocampal SWRs and associated spike dynamics during recovery sleep may be candidate network oscillation mechanisms underlying SD-induced memory deficits.


Assuntos
Hipocampo , Privação do Sono , Animais , Hipocampo/fisiologia , Camundongos , Parvalbuminas/metabolismo , Células Piramidais/fisiologia , Sono
6.
Anal Chem ; 94(42): 14627-14634, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36226357

RESUMO

Existing nucleic acid and antigen profiling methods for COVID-19 diagnosis fail to simultaneously meet the demands in sensitivity and detection speed, hampering them from being a comprehensive way for epidemic prevention and control. Thus, effective screening of COVID-19 requires a simple, fast, and sensitive method. Here, we report a rapid assay for ultrasensitive and highly specific profiling of COVID-19 associated antigen. The assay is based on a binding-induced DNA assembly on a nanoparticle scaffold that acts by fluorescence translation. By binding two aptamers to a target protein, the protein brings the DNA regions into close proximity, forming closed-loop conformation and resulting in the formation of the fluorescence translator. Using this assay, saliva nucleocapsid protein (N protein) has been profiled quantitatively by converting the N protein molecule information into a fluorescence signal. The fluorescence intensity is enhanced with increasing N protein concentration caused by the metal enhanced fluorescence using a simple, specific, and fast profiling assay within 3 min. On this basis, the assay enables a high recognition ratio and a limit of detection down to 150 fg mL-1. It is 1-2 orders of magnitude lower than existing commercial antigen ELISA kits, which is comparative to or superior than the PCR based nucleic acid testing. Owing to its rapidity, ultrasensitivity, as well as easy operation, it holds great promise as a tool for screening of COVID-19 and other epidemics such as monkey pox.


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Proteínas do Nucleocapsídeo/análise , Sensibilidade e Especificidade
7.
Mol Psychiatry ; 26(10): 5568-5577, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32681097

RESUMO

It is traditionally believed that cerebral amyloid-beta (Aß) deposits are derived from the brain itself in Alzheimer's disease (AD). Peripheral cells such as blood cells also produce Aß. The role of peripherally produced Aß in the pathogenesis of AD remains unknown. In this study, we established a bone marrow transplantation model to investigate the contribution of blood cell-produced Aß to AD pathogenesis. We found that bone marrow cells (BMCs) transplanted from APPswe/PS1dE9 transgenic mice into wild-type (Wt) mice at 3 months of age continuously expressed human Aß in the blood, and caused AD phenotypes including Aß plaques, cerebral amyloid angiopathy (CAA), tau hyperphosphorylation, neuronal degeneration, neuroinflammation, and behavioral deficits in the Wt recipient mice at 12 months after transplantation. Bone marrow reconstitution in APPswe/PS1dE9 mice with Wt-BMCs at 3 months of age reduced blood Aß levels, and alleviated brain Aß burden, neuronal degeneration, neuroinflammation, and behavioral deficits in the AD model mice at 12 months after transplantation. Our study demonstrated that blood cell-produced Aß plays a significant role in AD pathogenesis, and the elimination of peripheral production of Aß can decrease brain Aß deposition and represents a novel therapeutic approach for AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Células Sanguíneas/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos
8.
J Am Chem Soc ; 143(31): 12361-12368, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34324318

RESUMO

The tool box of site-specific cleavage for nucleic acid has been an increasingly attractive subject. Especially, the recent emergence of the orthogonally activatable DNA device is closely related to the site-specific scission. However, most of these cleavage strategies are based on exogenous assistance, such as laser irradiation. Endogenous strategies are highly desirable for the orthogonally regulatable DNA machine to explore the crucial intracellular biological process and cell signal network. Here, we found that the accurate site-specific cleavage reaction of phosphorothioate (PT) modified DNA by using myeloperoxidase (MPO). A scissors-like mechanism by which MPO breaks PT modification through chloride oxidation has been revealed. Furthermore, we have successfully applied the scissors to activate PT-modified hairpin-DNA machines to produce horseradish peroxidase (HRP)-mimicking DNAzyme or initiate hybridization chain reaction (HCR) amplification. Since MPO plays an important role in the pathway related to oxidative stress in cells, through the HCR amplification activated by this tool box, the oxidative stress in living cells has been robustly imaged. This work proposes an accurate and endogenous site-specific cleavage tool for the research of biostimuli and the construction of DNA molecular devices.


Assuntos
DNA/metabolismo , Peroxidase/metabolismo , Fosfatos/metabolismo , DNA/química , Humanos , Peroxidase/química , Fosfatos/química
9.
Analyst ; 145(21): 6821-6825, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-32857096

RESUMO

A multiplex bacterial assay method that combines S1 nuclease pretreatment and ICP-MS-based elemental labels is presented in this work. Six intestinal related bacteria were identified at the species level and quantified simultaneously without isolation culturing. This method could be extended to assay a mixed bacterial community for point-of-care diagnosis.


Assuntos
Bactérias , Bactérias/genética , Primers do DNA , DNA Bacteriano/genética , RNA Ribossômico 16S/genética
10.
Clin Chem Lab Med ; 58(6): 873-882, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31639100

RESUMO

Introduction Element-tagged immunoassay coupled with inductively coupled plasma-mass spectrometry (ICP-MS) detection has the potential to revolutionize immunoassay analysis in clinical detection; however, a systematic evaluation with the standard guidelines of the assay is needed to ensure its performance meets the requirements of the clinical laboratory. Methods Carcinoembryonic antigen (CEA) was chosen for analysis using the proposed method. A systematic evaluation of the proposed assay was carried out according to the Clinical and Laboratory Standards Institute (CLSI). The 469 clinical samples were analyzed using the new method and compared with the electrochemiluminescent immunoassay (ECLIA) method. Results The measurement range of the assay was 1-900 ng/mL, with a detection limit of 0.83 ng/mL. The inter-assay and intra-assay imprecision were 4.67% and 5.38% with high concentration samples, and 9.27% and 17.64% with low concentration samples, respectively. The cross-reactivity (%) for different antigens was less than 0.05%, and the recovery was between 94% and 108%. Percentage deviation of all the dilutions was less than 12.5% during linearity estimation. The interference bias caused by different substances was less than 10%. The reference interval of the assay was 0-4.442 ng/mL. Comparison with the commercial ECLIA method for clinical sample detection, the proposed method showed a correlation of 0.9878 and no significant differences between the methods were observed (p = 0.6666). Conclusions The ICP-MS based immunoassay was successfully developed, and the analytical performance of the assay met the requirements of the CLSI, which fully proved the clinical transferability and application of the new method.


Assuntos
Imunoensaio/métodos , Laboratórios , Espectrometria de Massas , Gases em Plasma/química , Humanos , Limite de Detecção
11.
J Clin Lab Anal ; 34(7): e23287, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32147885

RESUMO

OBJECTIVES: In this study, a new immunoassay for the simultaneous determination of pepsinogen I (PGI) and pepsinogen II (PGII) in serum based on element labeling strategy coupled with inductively coupled plasma mass spectrometry (ICP-MS) detection was proposed. METHODS: The sandwich-type immunoassay was used to simultaneously detect PGI and PGII in serum. PGI and PGII were captured by anti-PGI and anti-PGII antibody immobilized on the magnetic beads and then banded with Eu3+ labeled anti-PGI detection antibody and Sm3+ labeled anti-PGII detection antibody, followed by ICP-MS detection. RESULTS: The linear correlation coefficient (R2 ) of PGI and PGII standard curves was .9938 and .9911, with the dynamic range of 0-200 ng/mL and 0-60 ng/mL, respectively. The limit of detection for PGI and PGII was 1.8 ng/mL and 0.3 ng/mL, respectively. The average recovery was 101.41% ± 6.74% for PGI and 101.47% ± 4.20% for PGII. Good correlations were obtained between the proposed method and CLIA (r = .9588 for PGI, r = .9853 for PGII). CONCLUSIONS: We established a mass spectrometry-based immunoassay for the simultaneous detection of PGI and PGII in a single analysis. The element tagged immunoassay coupled with ICP-MS detection has high sensitivity, accuracy, and specificity in clinical serum sample analysis.


Assuntos
Imunoensaio/métodos , Espectrometria de Massas/métodos , Pepsinogênio A/sangue , Pepsinogênio C/sangue , Neoplasias Gástricas/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Imobilizados , Biomarcadores Tumorais/sangue , Európio/química , Feminino , Humanos , Imunoensaio/instrumentação , Imunoensaio/normas , Marcação por Isótopo , Limite de Detecção , Masculino , Pessoa de Meia-Idade , Pepsinogênio A/imunologia , Pepsinogênio C/imunologia , Samário/química , Neoplasias Gástricas/diagnóstico , Adulto Jovem
12.
Anal Chem ; 91(2): 1384-1390, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30582678

RESUMO

Hypoxia is a common characteristic of solid tumors, which is caused by the imbalance of oxygen supply and consumption. As the expression level of nitroreductase (NTR) increases in hypoxic solid tumors, NTR is one of the common biomarkers of hypoxia and widely used to evaluate the degree of tumor hypoxia. In this study, we designed and synthesized a highly water-soluble chemiluminescent probe, CL-NTR, for the detection of NTR activity in hypoxic tumors. It was found that the probe could be used to detect NTR with high sensitivity, and the total light photons increased tremendously with 6000-fold after the probe was treated with NTR. The chemiluminescence total light photons emission was directly proportional to the concentration of nitroreductase in the range of 3-55 ng/mL, with a detection limit of 0.947 ng/mL. Finally, the probe was successfully used to evaluate NTR activity in living mice by chemiluminescent imaging. In general, this probe has a remarkable response to NTR, which provides a promising method for the determination of NTR activity in vivo.


Assuntos
Ensaios Enzimáticos/métodos , Limite de Detecção , Substâncias Luminescentes/química , Nitrorredutases/química , Nitrorredutases/metabolismo , Imagem Óptica/métodos , Células A549 , Animais , Humanos , Camundongos
13.
Anal Chem ; 91(9): 5980-5986, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30973226

RESUMO

Multiplex biomolecular analysis with inductively coupled plasma mass spectrometry (ICP-MS) becomes increasingly important in clinical diagnosis and single cell analysis. However, the sensitivity of ICP-MS-based immunoassay is only comparable or lower than those of fluorescence methods at the present stage. Therefore, designing elemental tags with a large number of metal atoms is necessary to achieve high-sensitive detection. In this work, we proposed a new strategy to build up elemental tag loading with hundreds of rare earth ions by coupling alkyne-DNA chains with rare earth element (REE)-DOTA complexes a click chemistry reaction. There are about 2 orders of magnitude improvement in sensitivity compared with single metal-ion tags. DNA chains with multialkynyl groups were facilely prepared by PCR synthesis. Moreover, the DNA-based elemental tags own excellent water-solubility and biocompatibility. The tags would be potentially applied to mass cytometry and clinical diagnosis.


Assuntos
Alcinos/química , Imunoensaio/métodos , Espectrometria de Massas/métodos , Metais Terras Raras/química , Oligonucleotídeos/química , alfa-Fetoproteínas/análise , Humanos
14.
Analyst ; 144(20): 6019-6024, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31538152

RESUMO

With the increase in cancer risk, early immunodiagnosis is of great significance for timely therapy. In this work, a DNA-mediated immunosensor for the highly sensitive detection of prostate specific antigen (PSA) is proposed, which is mainly based on a portable personal glucose meter (PGM). Gold nanoparticles (AuNPs) functionalized with PSA detection antibodies and DNA primers are introduced. When the target of the PSA is present, rolling circle amplification (RCA) reactions on AuNPs are triggered and numerous repeated RCA products hybridize with the DNA-conjugated invertase; thus the signal of the PGM is generated and the PSA is quantified indirectly. With the use of a portable PGM, our method realizes a linear detection range of 0.003-50 ng mL-1, with a low detection limit of 0.1 pg mL-1, which is comparable to that of the traditional methods using expensive apparatus. Besides, the analysis of clinical human serum samples is performed to investigate its good practicability. This simple, low-cost, and miniaturized immunosensor is promising for the point-of-care testing of cancer markers.


Assuntos
Anticorpos Imobilizados/química , Técnicas Biossensoriais/métodos , DNA/química , Ouro/química , Nanopartículas Metálicas/química , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/diagnóstico , Humanos , Imunoensaio , Limite de Detecção , Masculino , Neoplasias da Próstata/sangue
15.
Cereb Cortex ; 28(7): 2439-2457, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28591796

RESUMO

Encoding of spatial information in the superficial layers of the medial entorhinal cortex (sMEC) involves theta-modulated spiking and gamma oscillations, as well as spatially tuned grid cells and border cells. Little is known about the role of the arousal-promoting histaminergic system in the modification of information encoded in the sMEC in vivo, and how such histamine-regulated information correlates with behavioral functions. Here, we show that histamine upregulates the neural excitability of a significant proportion of neurons (16.32%, 39.18%, and 52.94% at 30 µM, 300 µM, and 3 mM, respectively) and increases local theta (4-12 Hz) and gamma power (low: 25-48 Hz; high: 60-120 Hz) in the sMEC, through activation of histamine receptor types 1 and 3. During spatial exploration, the strength of theta-modulated firing of putative principal neurons and high gamma oscillations is enhanced about 2-fold by histamine. The histamine-mediated increase of theta phase-locking of spikes and high gamma power is consistent with successful spatial recognition. These results, for the first time, reveal possible mechanisms involving the arousal-promoting histaminergic system in the modulation of spatial cognition.


Assuntos
Córtex Entorrinal/efeitos dos fármacos , Ritmo Gama/efeitos dos fármacos , Histamina/farmacologia , Reconhecimento Visual de Modelos/efeitos dos fármacos , Percepção Espacial/efeitos dos fármacos , Ritmo Teta/efeitos dos fármacos , Animais , Biofísica , Relação Dose-Resposta a Droga , Estimulação Elétrica , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Histamínicos/farmacologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Estimulação Luminosa , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Potenciais Sinápticos/efeitos dos fármacos , Vigília , Ácido gama-Aminobutírico/metabolismo
16.
Int J Hyperthermia ; 36(1): 1129-1136, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31744350

RESUMO

Background: Tertiary hyperparathyroidism (THPT) is very common in hemodialysis patients with secondary hyperparathyroidism. However, a medical treatment is not indicated for THPT.Purpose: To investigate the feasibility, safety and efficacy of microwave ablation (MWA) in treating THPT.Materials and methods: Twenty-three patients with THPT were enrolled and treated with MWA. Clinical characteristics, serum levels of intact parathyroid hormone (iPTH), calcium, phosphorus and alkaline phosphatase (ALP), as well as treatment outcomes, were evaluated pre- and post-MWA. All patients were followed for >36 months for all assessable clinical data.Results: All patients successfully completed MWA. The mean follow-up was 47.0 ± 8.4 months. Immediately 1-day post-MWA, iPTH, calcium, phosphorus and ALP levels significantly decreased (all p < 0.001). During the long-term follow-up, iPTH levels increased gradually until 24 months and then remained at stable levels. After MWA, serum calcium reached stable levels at 24 months, while phosphorus and ALP reached stable levels at 6 months, and the levels were in the normal range or slightly higher than the upper normal limit. No obvious blood flow signals or significant recurrence was observed in the surgical nodules during follow-up. In the last follow-up, all nodules were persistent, but their maximum diameter and average volume were significantly lower after MWA (both p < 0.001), with an average reduction of 75.9 ± 11.3%. All patients had no major complications during MWA and follow-up.Conclusions: MWA is feasible, safe, effective and minimally invasive in treating THPT. Thus, MWA can be a nonsurgical alternative for treating THPT patients who are ineligible for surgery.


Assuntos
Técnicas de Ablação/métodos , Hiperparatireoidismo/diagnóstico por imagem , Adulto , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Retrospectivos
17.
Acta Neuropathol ; 136(4): 525-536, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30074071

RESUMO

Accumulation of pathological tau is the hallmark of Alzheimer's disease and other tauopathies and is closely correlated with cognitive decline. Clearance of pathological tau from the brain is a major therapeutic strategy for tauopathies. The physiological capacity of the periphery to clear brain-derived tau and its therapeutic potential remain largely unknown. Here, we found that cisterna magna injected 131I-labelled synthetic tau dynamically effluxed from the brain and was mainly cleared from the kidney, blood, and liver in mice; we also found that plasma tau levels in inferior vena cava were lower than those in femoral artery in humans. These findings suggest that tau proteins can efflux out of the brain and be cleared in the periphery under physiological conditions. Next, we showed that lowering blood tau levels via peritoneal dialysis could reduce interstitial fluid (ISF) tau levels in the brain, and tau levels in the blood and ISF were dynamically correlated; furthermore, tau efflux from the brain was accelerated after the addition of another set of peripheral system in a parabiosis model. Finally, we established parabiosis mouse models using tau transgenic mice and their wild-type littermates and found that brain tau levels and related pathologies in parabiotic transgenic mice were significantly reduced after parabiosis, suggesting that chronic enhancement of peripheral tau clearance alleviates pathological tau accumulation and neurodegeneration in the brain. Our study provides the first evidence of physiological clearance of brain-derived pathological tau in the periphery, suggesting that enhancing peripheral tau clearance is a potential therapeutic strategy for tauopathies.


Assuntos
Sistema Nervoso Periférico/metabolismo , Tauopatias/metabolismo , Tauopatias/terapia , Proteínas tau/metabolismo , Adulto , Idoso , Animais , Química Encefálica , Cisterna Magna/metabolismo , Líquido Extracelular/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Parabiose , Diálise Peritoneal , Distribuição Tecidual , Veia Cava Inferior/metabolismo , Proteínas tau/genética
18.
Cereb Cortex ; 27(6): 3254-3271, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28379350

RESUMO

The ability of the brain to predict future events based on the pattern of recent sensory experience is critical for guiding animal's behavior. Neocortical circuits for ongoing processing of sensory stimuli are extensively studied, but their contributions to the anticipation of upcoming sensory stimuli remain less understood. We, therefore, used in vivo cellular imaging and fiber photometry to record mouse primary auditory cortex to elucidate its role in processing anticipated stimulation. We found neuronal ensembles in layers 2/3, 4, and 5 which were activated in relationship to anticipated sound events following rhythmic stimulation. These neuronal activities correlated with the occurrence of anticipatory motor responses in an auditory learning task. Optogenetic manipulation experiments revealed an essential role of such neuronal activities in producing the anticipatory behavior. These results strongly suggest that the neural circuits of primary sensory cortex are critical for coding predictive information and transforming it into anticipatory motor behavior.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Motivação/fisiologia , Atividade Motora/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Animais , Córtex Auditivo/citologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Condicionamento Clássico , Comportamento de Ingestão de Líquido , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Parvalbuminas/genética , Parvalbuminas/metabolismo , Transdução Genética , Vigília
19.
Acta Neuropathol ; 134(2): 207-220, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28477083

RESUMO

Clearance of amyloid-beta (Aß) from the brain is an important therapeutic strategy for Alzheimer's disease (AD). Current studies mainly focus on the central approach of Aß clearance by introducing therapeutic agents into the brain. In a previous study, we found that peripheral tissues and organs play important roles in clearing brain-derived Aß, suggesting that the peripheral approach of removing Aß from the blood may also be effective for AD therapy. Here, we investigated whether peritoneal dialysis, a clinically available therapeutic method for chronic kidney disease (CKD), reduces brain Aß burden and attenuates AD-type pathologies and cognitive impairments. Thirty patients with newly diagnosed CKD were enrolled. The plasma Aß concentrations of the patients were measured before and after peritoneal dialysis. APP/PS1 mice were subjected to peritoneal dialysis once a day for 1 month from 6 months of age (prevention study) or 9 months of age (treatment study). The Aß in the interstitial fluid (ISF) was collected using microdialysis. Behavioural performance, long-term potentiation (LTP), Aß burden and other AD-type pathologies were measured after 1 month of peritoneal dialysis. Peritoneal dialysis significantly reduced plasma Aß levels in both CKD patients and APP/PS1 mice. Aß levels in the brain ISF of APP/PS1 mice immediately decreased after reduction of Aß in the blood during peritoneal dialysis. In both prevention and treatment studies, peritoneal dialysis substantially reduced Aß deposition, attenuated other AD-type pathologies, including Tau hyperphosphorylation, glial activation, neuroinflammation, neuronal loss, and synaptic dysfunction, and rescued the behavioural deficits of APPswe/PS1 mice. Importantly, the Aß phagocytosis function of microglia was enhanced in APP/PS1 mice after peritoneal dialysis. Our study suggests that peritoneal dialysis is a promising therapeutic method for AD, and Aß clearance using a peripheral approach could be a desirable therapeutic strategy for AD.


Assuntos
Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/sangue , Diálise Peritoneal/métodos , Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/sangue , Precursor de Proteína beta-Amiloide/genética , Animais , Apoptose/fisiologia , Ácido Aspártico Endopeptidases/sangue , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio , Estudos de Casos e Controles , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/terapia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores , Humanos , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Presenilina-1/genética , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/terapia
20.
Cereb Cortex ; 26(4): 1590-1608, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25595181

RESUMO

The medial entorhinal cortex (MEC) plays a crucial role in spatial learning and memory. Whereas the MEC receives a dense histaminergic innervation from the tuberomamillary nucleus of the hypothalamus, the functions of histamine in this brain region remain unclear. Here, we show that histamine acts via H1Rs to directly depolarize the principal neurons in the superficial, but not deep, layers of the MEC when recording at somata. Moreover, histamine decreases the spontaneous GABA, but not glutamate, release onto principal neurons in the superficial layers by acting at presynaptic H3Rs without effect on synaptic release in the deep layers. Histamine-induced depolarization is mediated via inhibition of Kir channels and requires the activation of protein kinase C, whereas the inhibition of spontaneous GABA release by histamine depends on voltage-gated Ca(2+) channels and extracellular Ca(2+). Furthermore, microinjection of the H1R or H3R, but not H2R, antagonist respectively into the superficial, but not deep, layers of MEC impairs rat spatial learning as assessed by water maze tasks but does not affect the motor function and exploratory activity in an open field. Together, our study indicates that histamine plays an essential role in spatial learning by selectively regulating neuronal excitability and synaptic transmission in the superficial layers of the MEC.


Assuntos
Córtex Entorrinal/fisiologia , Histamina/fisiologia , Neurônios/fisiologia , Aprendizagem Espacial/fisiologia , Animais , Canais de Cálcio/fisiologia , Córtex Entorrinal/efeitos dos fármacos , Ácido Glutâmico/fisiologia , Histamina/administração & dosagem , Masculino , Neurônios/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores Histamínicos H1/fisiologia , Aprendizagem Espacial/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA