Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(10)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36562516

RESUMO

Transparent conductive films with high stability were prepared by embedding silver nanowires in colorless polyimide and adding a protective layer of exfoliated graphene. The films exhibit great light transmission and conductivity with a sheet resistance of 22 Ω sq-1at transmittance of 83%. Due to its special embedded structure, the conductive layer can withstand several peeling experiments without falling off. In addition, the most outstanding advantage is the ultra-high stability of the films, including high mechanical robustness, strong chemical corrosion resistance and high operating voltage capacity. The organic light-emitting diode devices prepared based on this transparent conductive electrode exhibit comparable efficiency to indium tin oxide (ITO) based devices, withC.E.max= 2.78 cd A-1,P-1.E.max= 1.89 lm W-1,EQEmax= 0.89%. Moreover, the efficiencies were even higher than that of ITO devices when the operating voltage of the device exceeds 5 V. The above performances show that the transparent conductive electrode based on this structure has high potential for application in organic electronic devices.

2.
Materials (Basel) ; 15(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35888269

RESUMO

Transparent conductive films are widely used in electronic products and industrial fields. Ultra-thin Ag conductive nanofilm (ACF) was prepared on a soda lime silica glass (ordinary architectural glass) substrate with industrial magnetron sputtering equipment with AZO (Al2O3 doped ZnO) as the crystal bed and wetting layer. In order to improve the corrosion resistance and conductivity of the ACF, graphene nanosheets were modified on the surface of the ACF by electrospraying for the first time. The results show that this graphene modification could be carried out continuously on a meter scale. With the modification of the graphene layer, the corrosion rate of graphene-decorated ACF (G/ACF) can be reduced by 74.56%, and after 72 h of salt spray test, the conductivity of ACF samples without modification of graphene can be reduced by 34.1%, while the conductivity of G/ACF samples with modification of graphene can be reduced by only 6.5%. This work proves the potential of graphene modified ACF to prepare robust large-area transparent conductive film.

3.
Nanomaterials (Basel) ; 11(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071513

RESUMO

Graphene film has wide applications in optoelectronic and photovoltaic devices. A novel and facile method was reported for the reduction of graphene oxide (GO) film by electron transfer and nascent hydrogen produced between aluminum (Al) film deposited by magnetron sputtering and hydrochloric acid (HCl) solution for only 5 min, significantly shorter than by other chemical reduction methods. The thickness of Al film was controlled utilizing a metal detection sensor. The effect of the thickness of Al film and the concentration of HCl solution during the reduction was explored. The optimal thickness of Al film was obtained by UV-Vis spectroscopy and electrical conductivity measurement of reduced GO film. Atomic force microscope images could show the continuous film clearly, which resulted from the overlap of GO flakes, the film had a relatively flat surface morphology, and the surface roughness reduced from 7.68 to 3.13 nm after the Al reduction. The film sheet resistance can be obviously reduced, and it reached 9.38 kΩ/sq with a high transmittance of 80% (at 550 nm). The mechanism of the GO film reduction by electron transfer and nascent hydrogen during the procedure was also proposed and analyzed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA