Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e27396, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38510036

RESUMO

The main monitoring points of traditional sorting equipment fault monitoring methods are usually limited to the inlet and outlet, making it difficult to monitor the internal equipment, which may affect the accuracy of fault monitoring. Therefore, a new fault monitoring method based on back propagation neural network has been studied and designed, which is mainly applied to the sorting device of domestic waste incineration slag. The fault monitoring modeling variables of the domestic waste incineration slag sorting device are selected to determine the operation status of the sorting device. Based on back propagation neural network, a fault monitoring model for the sorting device of municipal solid waste incinerator slag is constructed, and the fault data of the sorting device is trained in the model, so that the fault data of the sorting device can be optimized faster, thus improving the accuracy of fault monitoring. Through comparative experiments with traditional methods, it has been confirmed that this fault monitoring method based on back propagation neural network has significant advantages in detection performance, demonstrating its potential in practical applications.

2.
RSC Adv ; 13(17): 11762-11770, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37063716

RESUMO

Aerated concrete specimens were prepared at Fuzhou and Lhasa with the same processing conditions. The compressive strengths of the specimens in Lhasa were lower than that in Fuzhou. We used SEM-EDS, XRD, FT-IR and MIP to study their microstructure in order to find the reasons made for differences in strength. Furthermore, the effect of the preparation process on the material strength was analyzed. The results showed that a low ambient temperature affected the autoclave curing process of the aerated concrete. A longer time was needed to reach the desired constant temperature, resulting in an insufficient degree of hydration, a low level of tobermorite generation, poor crystallinity, high porosity, an uneven pore size distribution, more harmful pore content above 200 nm and unsatisfactory strength. Under low environmental pressure, increasing autoclave pressure can promote the better formation of tobermorite to improve the strength of aerated concrete.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA