Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dig Dis ; 40(4): 506-514, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34510032

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has had an unprecedented and catastrophic impact on humanity and continues to progress. In addition to typical respiratory symptoms such as fever, cough, and dyspnea, a large percentage of COVID-19 patients experience gastrointestinal (GI) complaints, with the most common symptoms being diarrhea, nausea, vomiting, and abdominal discomfort. SUMMARY: We comprehensively summarize the latest knowledge of the adverse effects of COVID-19 and therapeutic drugs on the GI system, as well as related disease pathogenesis, and then provide a discussion focusing on the management and vaccination of patients who have inflammatory bowel disease (IBD) and GI cancer. The virus can affect the digestive system via binding to ACE2 receptors and subsequent gut microbiome dysbiosis. Through a variety of molecular pathways and mechanisms, numerous drugs for the treatment of COVID-19 could interfere with GI function and lead to multiple clinical manifestations, which may further intensify the risk and severity of GI symptoms of COVID-19 infection, such as nausea, vomiting, gastroparesis, and gastric ulcers. KEY MESSAGES: We should monitor GI manifestations closely while managing COVID-19 patients and take timely measures to reduce the incidence of SARS-CoV-2 infections in GI cancer patients. IBD patients should receive vaccination timely, but corticosteroid use should be minimized when they are vaccinated. Simultaneously, for persons with IBD who have known or suspected COVID-19, immunosuppressive agents, especially thiopurines, should be avoided/minimized if possible.


Assuntos
COVID-19 , Gastroenteropatias , Doenças Inflamatórias Intestinais , Neoplasias , Gastroenteropatias/diagnóstico , Humanos , Náusea/etiologia , SARS-CoV-2 , Vômito/etiologia
2.
J Environ Sci Health B ; 55(8): 704-711, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32500809

RESUMO

In order to solve the problem of heavy metal-organic compound soil pollution, in this paper, we developed a highly efficient electro kinetic-laccase combined remediation (EKLCR) system. The results showed that the EKLCR system had an obvious migration effect on heavy metals (copper and cadmium) and good migration-degradation effect on phenanthrene. The migration rates of copper and cadmium were 48.3% and 40.3%, respectively. Especially, with the presence of laccase, the removal rate of phenanthrene on Cu2+-contaminated soil was higher than that of Cd2+-contaminated soil due to the significant effect of heavy metals on the enzymatic activity of laccase. The average migration-degradation rate of phenanthrene by EKLCR system was 45.4%. Finally, gas chromatography-mass spectrometry (GC/MS) was used to analyze the degradation intermediates of phenanthrene in the soil, which included 9,10-Phenanthrenequinone, phthalic acid, and 2,2-Biphenyldicarboxylic Acid. In addition, we give the possible degradation pathways of phenanthrene, 2,2-Biphenyldicarboxylic Acid is further degraded to produce phthalic acid. The products of the phthalic acid metabolic pathway are protocatechuic acid, pyruvic acid or succinic acid, the final products of these organic acids are carbon dioxide and water.


Assuntos
Recuperação e Remediação Ambiental/métodos , Metais Pesados/análise , Fenantrenos/análise , Poluentes do Solo/análise , Biodegradação Ambiental , Desenho de Equipamento , Cromatografia Gasosa-Espectrometria de Massas , Cinética , Lacase/metabolismo , Metais Pesados/química , Fenantrenos/química , Fenantrenos/metabolismo , Solo/química , Poluentes do Solo/química
3.
Chemistry ; 22(37): 13041-5, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27339655

RESUMO

A new strategy has been established for the kinetic resolution of racemic allylic alcohols through a palladium/sulfonyl-hydrazide-catalyzed asymmetric OH-substitution under mild conditions. In the presence of 1 mol % [Pd(allyl)Cl]2 , 4 mol % (S)-SegPhos, and 10 mol % 2,5-dichlorobenzenesulfonyl hydrazide, a range of racemic allylic alcohols were smoothly resolved with selectivity factors of more than 400 through an asymmetric allylic alkylation of monosubstituted hydrazines under air at room temperature. Importantly, this kinetic resolution process provided various allylic alcohols and allylic hydrazine derivatives with high enantiopurity.

4.
Environ Technol ; 42(11): 1679-1692, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31591947

RESUMO

In this paper, laccase was immobilized with the adsorption-crosslinking method in which biochar was used as the carrier and glutaraldehyde was used as the crosslinking agent. Firstly, the optimal immobilization conditions and optimal operating conditions were investigated, and then the stability of both free laccase and immobilized laccase was compared. Finally, the 2,4-dichlorophenol contaminated soil was remedied with both free laccase and immobilized laccase, and the improvement on the remediation of the contaminated soil by immobilized laccase was analysed through the ecological evaluation. The results showed that in the optimal immobilization condition, the biochar with a particle size of 30 mesh should be selected, and glutaraldehyde with a volume fraction of 4% and 20 mL of laccase solution should be added to complete the 6-hour adsorption operation and 4-hour crosslinking operation. The stability of immobilized laccase was better than that of free laccase, and the thermal deactivation kinetic equation for the free laccase was lnA = -0.7657t + 0.4344 and the thermal deactivation kinetic equation for the immobilized laccase was lnA = -0.1048t + 0.0608, respectively. The degradation ability of immobilized laccase for 2-4 dichlorophenol was better than that of free laccase. The degradation rate of 2,4-dichlorophenol was 44.4% in the free laccase group and 64.6% in the immobilized laccase group. The ecological evaluation showed that the biochar-immobilized laccase had a positive effect on the soil ecological environment in the remediation process of the soil and can improve the remediation of the contaminated soil to some extent.


Assuntos
Lacase , Poluentes do Solo , Carvão Vegetal , Clorofenóis , Enzimas Imobilizadas , Solo
5.
Chem Sci ; 12(35): 11831-11838, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34659722

RESUMO

Chirality is one of the most important types of steric information in nature. In addition to central chirality, axial chirality has been catching more and more attention from scientists. However, although much attention has recently been paid to the creation of axial chirality and the chirality transfer of allenes, no study has been disclosed as to the memory of such an axial chirality. The reason is very obvious: the chiral information is stored over three carbon atoms. Here, the first example of the memory of chirality (MOC) of allenes has been recorded, which was realized via an optically active alkylidene-π-allyl iridium intermediate, leading to a highly stereoselective electrophilic allenylation with amines. Specifically, we have established the transition metal-mediated highly stereoselective 2,3-allenylation of amines by using optically active 2,3-allenyl carbonates under the catalysis of a nonchiral iridium(iii) complex. This method is compatible with sterically bulky and small substituents on both amines and 2,3-allenyl carbonates and furnishes the desired optically active products with a high efficiency of chirality transfer. Further mechanistic experiments reveal that the isomerization of the optically active alkylidene-π-allyl iridium intermediate is very slow.

6.
Chem Sci ; 12(27): 9347-9351, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34349905

RESUMO

A palladium-catalyzed C-O bond formation reaction between phenols and allenylic carbonates to give 2,3-allenic aromatic ethers with decent to excellent yields under mild reaction conditions has been described. A variety of synthetically useful functional groups are tolerated and the synthetic utility of this method has been demonstrated through a series of transformations of the allene moiety. By applying this reaction as the key step, the total syntheses of naturally occurring allenic aromatic ethers, eucalyptene and terricollene A (first synthesis; 4.5 g gram scale), have been accomplished.

7.
Chem Sci ; 10(21): 5505-5512, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31293734

RESUMO

Here we present an example of utilizing hydroxy groups for regioselectivity control in the addition reaction of alkynes-a highly efficient Pd-catalyzed syn-hydrocarboxylation of readily available 2-alkynylic alcohols with CO in the presence of alcohols with an unprecedented regioselectivity affording 3-hydroxy-2(E)-alkenoates. The role of the hydroxy group has been carefully studied. The synthetic potential of the products has also been demonstrated.

8.
Int J Biol Macromol ; 132: 658-665, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30946908

RESUMO

Adsorption of metal impurities from transformer oil was studied using a novel porous membrane. A solution of N, O­carboxymethyl­chitosan (CMC) and sodium phytate (SP) was blended to prepare a novel porous membrane for the metal impurities adsorption from transformer oil. The chemical structure of the membranes was characterised by their FTIR spectra, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and video camera observations. The effects of the SP content of the membrane, contact time, and contact temperature on adsorption of copper, iron, and aluminium impurities were studied. The FTIR spectra and thermogravimetric curves of the membranes indicated good compatibility between CMC and SP. The SEM and video camera observations suggested that CMC-SP composite membranes had a mature, porous structure. The experimental results showed that the SP content significantly affected the adsorption capacity of a CMC membrane. The maximum adsorption percentages of elemental copper, iron, and aluminium were 88.12%, 82.35%, and 80.36% when the SP ratio was 80% at 60 °C.


Assuntos
Quitosana/análogos & derivados , Equipamentos e Provisões Elétricas , Membranas Artificiais , Óleos/química , Ácido Fítico/química , Quitosana/química , Cinética , Porosidade , Temperatura
9.
Polymers (Basel) ; 11(9)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466406

RESUMO

Chitosan microspheres modified by 2-pyridinecarboxaldehyde were prepared and used in the construction of a heterogeneous catalyst loaded with nano-Cu prepared by a reduction reaction. The chemical structure of the catalyst was investigated by Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and X-ray Photoelectron Spectroscopy (XPS). Under mild conditions, such as no ligand at room temperature, the catalyst was successfully applied to catalyze the borylation of α,ß-unsaturated receptors in a water-methanol medium, yielding 17%-100% of the corresponding -hydroxy product. Even after repeated use five times, the catalyst still exhibited excellent catalytic activity.

10.
ACS Appl Mater Interfaces ; 10(9): 7946-7954, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29425021

RESUMO

In this work, we propose a novel and facile route for the rational design of Si@SiO2/C anode materials by using sustainable and environment-friendly cellulose as a carbon resource. To simultaneously obtain a SiO2 layer and a carbon scaffold, a specially designed homogeneous cellulose solution and commercial Si nanopowder are used as the starting materials, and the cellulose/Si composite is directly assembled by an in situ regenerating method. Subsequently, Si@SiO2/C composite is obtained after carbonization. As expected, Si@SiO2 is homogeneously encapsulated in the cellulose-derived carbon network. The obtained Si@SiO2/C composite shows a high reversible capacity of 1071 mA h g-1 at a current density of 420 mA g-1 and 70% capacity retention after 200 cycles. This novel, sustainable, and effective design is a promising approach to obtain high-performance and cost-effective composite anodes for practical applications.

11.
Org Lett ; 19(18): 4850-4853, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28846434

RESUMO

The use of hydrazinecarboxamides as a new class of carbamoylating agents has been established through the dehydrazinative Minisci reaction of electron-deficient nitrogen heteroarenes. A wide range of electron-deficient nitrogen heteroarenes, including isoquinoline, quinoline, pyridine, phenanthridine, quinoxaline, and phthalazine, underwent copper/acid-catalyzed oxidative carbamoylation with hydrazinecarboxamide hydrochlorides to afford structurally diverse nitrogen-heteroaryl carboxamides as single regioisomers in moderate to excellent yields. The functional group tolerance was substantially demonstrated in the direct carbamoylation of quinine obviating multistep sequences involving protecting groups and prefunctionalization of the heterocycle.

12.
Chem Commun (Camb) ; 53(92): 12430-12433, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29082989

RESUMO

An atom economic approach from readily available propargylic alcohols to allenes, the first carboxylation of propargylic alcohols, has been established. Through the cooperative binary catalysis of Pd and a phosphoric acid, the reaction afforded multi-substituted allenoates with a broad scope tolerating useful functional groups. The synthetic potential of the obtained products has been demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA