Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Gut ; 71(9): 1843-1855, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34921062

RESUMO

OBJECTIVE: Stromal barriers, such as the abundant desmoplastic stroma that is characteristic of pancreatic ductal adenocarcinoma (PDAC), can block the delivery and decrease the tumour-penetrating ability of therapeutics such as tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), which can selectively induce cancer cell apoptosis. This study aimed to develop a TRAIL-based nanotherapy that not only eliminated the extracellular matrix barrier to increase TRAIL delivery into tumours but also blocked antiapoptotic mechanisms to overcome TRAIL resistance in PDAC. DESIGN: Nitric oxide (NO) plays a role in preventing tissue desmoplasia and could thus be delivered to disrupt the stromal barrier and improve TRAIL delivery in PDAC. We applied an in vitro-in vivo combinatorial phage display technique to identify novel peptide ligands to target the desmoplastic stroma in both murine and human orthotopic PDAC. We then constructed a stroma-targeted nanogel modified with phage display-identified tumour stroma-targeting peptides to co-deliver NO and TRAIL to PDAC and examined the anticancer effect in three-dimensional spheroid cultures in vitro and in orthotopic PDAC models in vivo. RESULTS: The delivery of NO to the PDAC tumour stroma resulted in reprogramming of activated pancreatic stellate cells, alleviation of tumour desmoplasia and downregulation of antiapoptotic BCL-2 protein expression, thereby facilitating tumour penetration by TRAIL and substantially enhancing the antitumour efficacy of TRAIL therapy. CONCLUSION: The co-delivery of TRAIL and NO by a stroma-targeted nanogel that remodels the fibrotic tumour microenvironment and suppresses tumour growth has the potential to be translated into a safe and promising treatment for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/patologia , Humanos , Camundongos , Nanogéis , Óxido Nítrico , Neoplasias Pancreáticas/patologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Microambiente Tumoral , Neoplasias Pancreáticas
2.
Int J Mol Sci ; 23(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35683001

RESUMO

The reconstruction of bone defects remains challenging. The utilization of bone autografts, although quite promising, is limited by several drawbacks, especially substantial donor site complications. Recently, strontium (Sr), a bioactive trace element with excellent osteoinductive, osteoconductive, and pro-angiogenic properties, has emerged as a potential therapeutic agent for bone repair. Herein, a strontium peroxide (SrO2)-loaded poly(lactic-co-glycolic acid) (PLGA)-gelatin scaffold system was developed as an implantable bone substitute. Gelatin sponges serve as porous osteoconductive scaffolds, while PLGA not only reinforces the mechanical strength of the gelatin but also controls the rate of water infiltration. The encapsulated SrO2 can release Sr2+ in a sustained manner upon exposure to water, thus effectively stimulating the proliferation of osteoblasts and suppressing the formation of osteoclasts. Moreover, SrO2 can generate hydrogen peroxide and subsequent oxygen molecules to increase local oxygen tension, an essential niche factor for osteogenesis. Collectively, the developed SrO2-loaded composite scaffold shows promise as a multifunctional bioactive bone graft for bone tissue engineering.


Assuntos
Estrôncio , Alicerces Teciduais , Materiais Biocompatíveis , Regeneração Óssea , Gelatina/farmacologia , Osteoblastos , Osteoclastos , Osteogênese , Oxigênio , Peróxidos/farmacologia , Estrôncio/farmacologia , Engenharia Tecidual , Água
3.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35008908

RESUMO

The major biological methyl donor, S-adenosylmethionine (adoMet) synthesis occurs mainly in the liver. Methionine adenosyltransferase 1A (MAT1A) and glycine N-methyltransferase (GNMT) are two key enzymes involved in the functional implications of that variation. We collected 42 RNA-seq data from paired hepatocellular carcinoma (HCC) and its adjacent normal liver tissue from the Cancer Genome Atlas (TCGA). There was no mutation found in MAT1A or GNMT RNA in the 42 HCC patients. The 11,799 genes were annotated in the RNA-Seq data, and their expression levels were used to investigate the phenotypes of low MAT1A and low GNMT by Gene Set Enrichment Analysis (GSEA). The REACTOME_TRANSLATION gene set was enriched and visualized in a heatmap along with corresponding differences in gene expression between low MAT1A versus high MAT1A and low GNMT versus high GNMT. We identified 43 genes of the REACTOME_TRANSLATION gene set that are powerful prognosis factors in HCC. The significantly predicted genes were referred into eukaryotic translation initiation (EIF3B, EIF3K), eukaryotic translation elongation (EEF1D), and ribosomal proteins (RPs). Cell models expressing various MAT1A and GNMT proved that simultaneous restoring the expression of MAT1A and GNMT decreased cell proliferation, invasion, as well as the REACTOME_TRANSLATION gene EEF1D, consistent with a better prognosis in human HCC. We demonstrated new findings that downregulation or defect in MAT1A and GNMT genes can enrich the protein-associated translation process that may account for poor HCC prognosis. This is the first study demonstrated that MAT1A and GNMT, the 2 key enzymes involved in methionine cycle, could attenuate the function of ribosome translation. We propose a potential novel mechanism by which the diminished GNMT and MAT1A expression may confer poor prognosis for HCC.


Assuntos
Carcinoma Hepatocelular/genética , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Glicina N-Metiltransferase/genética , Neoplasias Hepáticas/genética , Metionina Adenosiltransferase/genética , Metionina/metabolismo , Biossíntese de Proteínas , Sequência de Bases , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Metilação de DNA/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Glicina N-Metiltransferase/metabolismo , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/patologia , Metionina Adenosiltransferase/metabolismo , Invasividade Neoplásica , Fator 1 de Elongação de Peptídeos/metabolismo , Regiões Promotoras Genéticas/genética , Biossíntese de Proteínas/genética , Análise de Sobrevida
4.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34576264

RESUMO

After the discovery of endogenous dinitrosyl iron complexes (DNICs) as a potential biological equivalent of nitric oxide (NO), bioinorganic engineering of [Fe(NO)2] unit has emerged to develop biomimetic DNICs [(NO)2Fe(L)2] as a chemical biology tool for controlled delivery of NO. For example, water-soluble DNIC [Fe2(µ-SCH2CH2OH)2(NO)4] (DNIC-1) was explored for oral delivery of NO to the brain and for the activation of hippocampal neurogenesis. However, the kinetics and mechanism for cellular uptake and intracellular release of NO, as well as the biocompatibility of synthetic DNICs, remain elusive. Prompted by the potential application of NO to dermato-physiological regulations, in this study, cellular uptake and intracellular delivery of DNIC [Fe2(µ-SCH2CH2COOH)2(NO)4] (DNIC-2) and its regulatory effect/biocompatibility toward epidermal cells were investigated. Upon the treatment of DNIC-2 to human fibroblast cells, cellular uptake of DNIC-2 followed by transformation into protein-bound DNICs occur to trigger the intracellular release of NO with a half-life of 1.8 ± 0.2 h. As opposed to the burst release of extracellular NO from diethylamine NONOate (DEANO), the cell-penetrating nature of DNIC-2 rationalizes its overwhelming efficacy for intracellular delivery of NO. Moreover, NO-delivery DNIC-2 can regulate cell proliferation, accelerate wound healing, and enhance the deposition of collagen in human fibroblast cells. Based on the in vitro and in vivo biocompatibility evaluation, biocompatible DNIC-2 holds the potential to be a novel active ingredient for skincare products.


Assuntos
Materiais Biocompatíveis/química , Fibroblastos/efeitos dos fármacos , Ferro/química , Óxido Nítrico/química , Óxidos de Nitrogênio/química , Pele/efeitos dos fármacos , Animais , Linhagem Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Colágeno/química , Córnea/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Embrião não Mamífero/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Olho/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Técnicas In Vitro , Cinética , Melanócitos/metabolismo , Oxigênio/química , Pigmentação , Cicatrização , Peixe-Zebra/embriologia
5.
J Cell Mol Med ; 24(12): 6596-6608, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32333497

RESUMO

The short supply of donor corneas is exacerbated by the unsuitability of donors with insufficient endothelial cell density. Few studies have investigated promoting corneal endothelial cell proliferation to increase the endothelial cell density. We hypothesize that pre-transplantation treatment of proliferative tissue-cultivated corneas may increase corneal endothelial cell density. We observed that the airlift cultures were superior to immersion cultures with respect to both transparency and thickness. In this tissue culture system, we observed that lysophosphatidic acid increased the rabbit corneal endothelial cell density, number of BrdU-positive cells and improve wound healing. We also observed an indirect effect of lysophosphatidic acid on corneal endothelial cell proliferation mediated by the stimulation of interleukin-1ß secretion from stromal cells. Human corneal tissues treated with lysophosphatidic acid or interleukin-1ß contained significantly more Ki-67-positive cells than untreated group. The lysophosphatidic acid- or interleukin-1ß-treated cultured tissue remained hexagon-shaped, with ZO-1 expression and no evidence of the endothelial-mesenchymal transition. Our novel protocol of tissue culture may be applicable for eye banks to optimize corneal grafting.


Assuntos
Endotélio Corneano/efeitos dos fármacos , Interleucina-1beta/metabolismo , Lisofosfolipídeos/farmacologia , Técnicas de Cultura de Órgãos , Animais , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Coelhos , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Cicatrização
6.
J Am Chem Soc ; 139(37): 12923-12926, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28870078

RESUMO

Hydrogen gas can reduce cytotoxic reactive oxygen species (ROS) that are produced in inflamed tissues. Inspired by natural photosynthesis, this work proposes a multicomponent nanoreactor (NR) that comprises chlorophyll a, l-ascorbic acid, and gold nanoparticles that are encapsulated in a liposomal (Lip) system that can produce H2 gas in situ upon photon absorption to mitigate inflammatory responses. Unlike a bulk system that contains free reacting molecules, this Lip NR system provides an optimal reaction environment, facilitating rapid activation of the photosynthesis of H2 gas, locally providing a high therapeutic concentration thereof. The photodriven NR system reduces the degrees of overproduction of ROS and pro-inflammatory cytokines both in vitro in RAW264.7 cells and in vivo in mice with paw inflammation that is induced by lipopolysaccharide (LPS). Histological examinations of tissue sections confirm the ability of the NR system to reduce LPS-induced inflammation. Experimental results indicate that the Lip NR system that can photosynthesize H2 gas has great potential for mitigating oxidative stress in tissue inflammation.


Assuntos
Ouro/metabolismo , Hidrogênio/metabolismo , Inflamação/metabolismo , Nanopartículas Metálicas/química , Estresse Oxidativo , Fotossíntese , Animais , Ouro/química , Hidrogênio/química , Inflamação/induzido quimicamente , Lipopolissacarídeos/metabolismo , Camundongos , Conformação Molecular , Células RAW 264.7
7.
J Am Chem Soc ; 138(16): 5222-5, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27075956

RESUMO

In the absence of adequate oxygen, cancer cells that are grown in hypoxic solid tumors resist treatment using antitumor drugs (such as doxorubicin, DOX), owing to their attenuated intracellular production of reactive oxygen species (ROS). Hyperbaric oxygen (HBO) therapy favorably improves oxygen transport to the hypoxic tumor tissues, thereby increasing the sensitivity of tumor cells to DOX. However, the use of HBO with DOX potentiates the ROS-mediated cytotoxicity of the drug toward normal tissues. In this work, we hypothesize that regional oxygen treatment by an implanted oxygen-generating depot may enhance the cytotoxicity of DOX against malignant tissues in a highly site-specific manner, without raising systemic oxygen levels. Upon implantation close to the tumor, the oxygen-generating depot reacts with the interstitial medium to produce oxygen in situ, effectively shrinking the hypoxic regions in the tumor tissues. Increasing the local availability of oxygen causes the cytotoxicity of DOX that is accumulated in the tumors to be significantly enhanced by the elevated production of ROS, ultimately allaying the hypoxia-induced DOX resistance in solid malignancies. Importantly, this enhancement of cytotoxicity is limited to the site of the tumors, and this feature of the system that is proposed herein is unique.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Implantes de Medicamento/farmacologia , Oxigenoterapia Hiperbárica/métodos , Hipóxia Tumoral/efeitos dos fármacos , Animais , Antígenos de Neoplasias/metabolismo , Cloreto de Cálcio/química , Anidrase Carbônica IX/metabolismo , Catalase/química , Catalase/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/farmacocinética , Implantes de Medicamento/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Camundongos Nus , Oxigênio , Peróxidos/química , Tomografia por Emissão de Pósitrons , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nanomedicine ; 12(2): 431-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26711965

RESUMO

This work develops a composite system of reduced graphene oxide (rGO)-iron oxide nanoparticles (rGO-IONP) that can synergistically induce physical and chemical damage to methicillin-resistant Staphylococcus aureus (MRSA) that are present in subcutaneous abscesses. rGO-IONP was synthesized by the chemical deposition of Fe(2+)/Fe(3+) ions on nanosheets of rGO in aqueous ammonia. The antibacterial efficacy of the as-prepared rGO-IONP was evaluated in a mouse model with MRSA-infected subcutaneous abscesses. Upon exposure to a near-infrared laser in vitro, rGO-IONP synergistically generated localized heat and large amounts of hydroxyl radicals, which inactivated MRSA. The in vivo results reveal that combined treatment with localized heat and oxidative stress that is caused by hydroxyl radicals accelerated the healing of wounds associated with MRSA-infected abscesses. The above results demonstrate that an rGO-IONP nanocomposite system that can effectively inactivate multiple-drug-resistant bacteria in subcutaneous infections was successfully developed. FROM THE CLINICAL EDITOR: The emergence of methicillin-resistant S. aureus (MRSA) has posed a significant problem in the clinical setting. Thus, it is imperative to develop new treatment strategies against this. In this study, the authors described the use of reduced graphene oxide (rGO)-iron oxide nanoparticles (rGO-IONP) to induce heat and chemical damage to MRSA. This approach may provide a platform the design of other treatment modalities against multiple-drug-resistant bacteria.


Assuntos
Antibacterianos/uso terapêutico , Compostos Férricos/uso terapêutico , Grafite/uso terapêutico , Radical Hidroxila/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanocompostos/uso terapêutico , Infecções Estafilocócicas/terapia , Animais , Antibacterianos/química , Feminino , Compostos Férricos/química , Grafite/química , Temperatura Alta , Hipertermia Induzida/métodos , Raios Infravermelhos , Camundongos Endogâmicos BALB C , Nanocompostos/química , Nanocompostos/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Fototerapia/métodos , Infecções Estafilocócicas/metabolismo
9.
ACS Nano ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952208

RESUMO

Immunotherapy can potentially suppress the highly aggressive glioblastoma (GBM) by promoting T lymphocyte infiltration. Nevertheless, the immune privilege phenomenon, coupled with the generally low immunogenicity of vaccines, frequently hampers the presence of lymphocytes within brain tumors, particularly in brain tumors. In this study, the membrane-disrupted polymer-wrapped CuS nanoflakes that can penetrate delivery to deep brain tumors via releasing the cell-cell interactions, facilitating the near-infrared II (NIR II) photothermal therapy, and detaining dendritic cells for a self-cascading immunotherapy are developed. By convection-enhanced delivery, membrane-disrupted amphiphilic polymer micelles (poly(methoxypoly(ethylene glycol)-benzoic imine-octadecane, mPEG-b-C18) with CuS nanoflakes enhances tumor permeability and resides in deep brain tumors. Under low-power NIR II irradiation (0.8 W/cm2), the intense heat generated by well-distributed CuS nanoflakes actuates the thermolytic efficacy, facilitating cell apoptosis and the subsequent antigen release. Then, the positively charged polymer after hydrolysis of the benzoic-imine bond serves as an antigen depot, detaining autologous tumor-associated antigens and presenting them to dendritic cells, ensuring sustained immune stimulation. This self-cascading penetrative immunotherapy amplifies the immune response to postoperative brain tumors but also enhances survival outcomes through effective brain immunotherapy.

10.
Am J Sports Med ; 52(2): 406-422, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38193194

RESUMO

BACKGROUND: Tendons have limited regenerative potential, so healing of ruptured tendon tissue requires a prolonged period, and the prognosis is suboptimal. Although stem cell transplantation-based approaches show promise for accelerating tendon repair, the resultant therapeutic efficacy remains unsatisfactory. HYPOTHESIS: The transplantation of stem cells preassembled as 3-dimensional spheroids achieves a superior therapeutic outcome compared with the transplantation of single-cell suspensions. STUDY DESIGN: Controlled laboratory study. METHODS: Adipose-derived stem cells (ADSCs) were assembled as spheroids using a methylcellulose hydrogel system. The secretome of ADSC suspensions or spheroids was collected and utilized to treat tenocytes and macrophages to evaluate their therapeutic potential and investigate the mechanisms underlying their effects. RNA sequencing was performed to investigate the global difference in gene expression between ADSC suspensions and spheroids in an in vitro inflammatory microenvironment. For the in vivo experiment, rabbits that underwent Achilles tendon transection, followed by stump suturing, were randomly assigned to 1 of 3 groups: intratendinous injection of saline, rabbit ADSCs as conventional single-cell suspensions, or preassembled ADSC spheroids. The tendons were harvested for biomechanical testing and histological analysis at 4 weeks postoperatively. RESULTS: Our in vitro results demonstrated that the secretome of ADSCs assembled as spheroids exhibited enhanced modulatory activity in (1) tenocyte proliferation (P = .015) and migration (P = .001) by activating extracellular signal-regulated kinase (ERK) signaling and (2) the suppression of the secretion of interleukin-6 (P = .005) and interleukin-1α (P = .042) by M1 macrophages via the COX-2/PGE2/EP4 signaling axis. Gene expression profiling of cells exposed to an inflammatory milieu revealed significantly enriched terms that were associated with the immune response, cytokines, and tissue remodeling in preassembled ADSC spheroids. Ex vivo fluorescence imaging revealed that the engraftment efficiency of ADSCs in the form of spheroids was higher than that of ADSCs in single-cell suspensions (P = .003). Furthermore, the transplantation of ADSC spheroids showed superior therapeutic effects in promoting the healing of sutured stumps, as evidenced by improvements in the tensile strength (P = .019) and fiber alignment (P < .001) of the repaired tendons. CONCLUSION: The assembly of ADSCs as spheroids significantly advanced their potential to harness tenocytes and macrophages. As a proof of concept, this study clearly demonstrates the effectiveness of using ADSC spheroids to promote tendon regeneration. CLINICAL RELEVANCE: The present study lays a foundation for future clinical applications of stem cell spheroid-based therapy for the management of tendon injuries.


Assuntos
Tendão do Calcâneo , Traumatismos dos Tendões , Animais , Coelhos , Tendão do Calcâneo/patologia , Tenócitos , Tecido Adiposo/patologia , Traumatismos dos Tendões/cirurgia , Macrófagos/patologia , Células-Tronco/fisiologia , Proliferação de Células
11.
Bioeng Transl Med ; 9(2): e10635, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38435829

RESUMO

The prognosis for postinjury peripheral nerve regeneration remains suboptimal. Although transplantation of exogenous Schwann cells (SCs) has been considered a promising treatment to promote nerve repair, this strategy has been hampered in practice by the limited availability of SC sources and an insufficient postengraftment cell retention rate. In this study, to address these challenges, SCs were aggregated into spheroids before being delivered to an injured rat sciatic nerve. We found that the three-dimensional aggregation of SCs induced their acquisition of a repair phenotype, as indicated by enhanced levels of c-Jun expression/activation and decreased expression of myelin sheath protein. Furthermore, our in vitro results demonstrated the superior potential of the SC spheroid-derived secretome in promoting neurite outgrowth of dorsal root ganglion neurons, enhancing the proliferation and migration of endogenous SCs, and recruiting macrophages. Moreover, transplantation of SC spheroids into rats after sciatic nerve transection effectively increased the postinjury nerve structure restoration and motor functional recovery rates, demonstrating the therapeutic potential of SC spheroids. In summary, transplantation of preassembled SC spheroids may hold great potential for enhancing the cell delivery efficiency and the resultant therapeutic outcome, thereby improving SC-based transplantation approaches for promoting peripheral nerve regeneration.

12.
JACS Au ; 4(4): 1550-1569, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665642

RESUMO

Dinitrosyl iron unit (DNIU), [Fe(NO)2], is a natural metallocofactor for biological storage, delivery, and metabolism of nitric oxide (NO). In the attempt to gain a biomimetic insight into the natural DNIU under biological system, in this study, synthetic dinitrosyl iron complexes (DNICs) [(NO)2Fe(µ-SCH2CH2COOH)2Fe(NO)2] (DNIC-COOH) and [(NO)2Fe(µ-SCH2CH2COOCH3)2Fe(NO)2] (DNIC-COOMe) were employed to investigate the structure-reactivity relationship of mechanism and kinetics for cellular uptake of DNICs, intracellular delivery of NO, and activation of cytoprotective heme oxygenase (HO)-1. After rapid cellular uptake of dinuclear DNIC-COOMe through a thiol-mediated pathway (tmax = 0.5 h), intracellular assembly of mononuclear DNIC [(NO)2Fe(SR)(SCys)]n-/[(NO)2Fe(SR)(SCys-protein)]n- occurred, followed by O2-induced release of free NO (tmax = 1-2 h) or direct transfer of NO to soluble guanylate cyclase, which triggered the downstream HO-1. In contrast, steady kinetics for cellular uptake of DNIC-COOH via endocytosis (tmax = 2-8 h) and for intracellular release of NO (tmax = 4-6 h) reflected on the elevated activation of cytoprotective HO-1 (∼50-150-fold change at t = 3-10 h) and on the improved survival of DNIC-COOH-primed mesenchymal stem cell (MSC)/human corneal endothelial cell (HCEC) under stressed conditions. Consequently, this study unravels the bridging thiolate ligands in dinuclear DNIC-COOH/DNIC-COOMe as a switch to control the mechanism, kinetics, and efficacy for cellular uptake of DNICs, intracellular delivery of NO, and activation of cytoprotective HO-1, which poses an implication on enhanced survival of postengrafted MSC for advancing the MSC-based regenerative medicine.

13.
Sci Rep ; 13(1): 1292, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690679

RESUMO

Human metallothionein-2A (MT2A) protein participates in metal homeostasis, detoxification, oxidative stress reduction, and immune defense. It decreases heavy metal ions and reactive oxygen species (ROS) during injury of cells and tissues. The single nucleotide polymorphisms at the MT2A gene have been associated in various human diseases including cancer. The current study aimed to elucidate associations between MT2A genotypes with the clinical, biochemical, and molecular characteristics that potentially related to lowered MT2A ex-pression. One hundred and forty-one healthy Taiwanese subjects were enrolled from Changhua Show-Chwan Memorial Hospital. Clinical, biochemical and molecular characteristics including the frequent minor allele SNPs, rs28366003 and rs10636, within the MT2A gene were determined. The genotype distribution of MT2A rs10636 fits the Hardy-Weinberg equilibrium. The significant associations with gradually decline of mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) were identified with MT2A rs10636 and rs28366003 using analysis of variance (ANOVA) with Tukey's analysis as a post hoc test. We further validated the correlations between the expressions of genes in erythropoiesis, cholesterol synthesis, platelet synthesis, insulin with MT2A using the web-based Gene Expression Profiling Interactive Analysis (GEPIA) databases. The results revealed that hypoxia-inducible factor 1α (HIF-1α), erythropoietin (EPO), lipoprotein lipase (LPL), and lecithin-cholesterol acyltransferase (LCAT) mRNA ex-pression are significantly correlated with MT2A mRNA expression. In conclusion, these results suggested that genetic variations of MT2A rs10636 and rs28366003 might be an important risk factor for erythropoiesis in the Taiwanese general population.


Assuntos
Índices de Eritrócitos , Eritropoese , Metalotioneína , Humanos , Alelos , Genótipo , Metalotioneína/genética , Metais Pesados/metabolismo , Polimorfismo de Nucleotídeo Único , Taiwan
14.
Int J Biol Macromol ; 241: 124636, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37119896

RESUMO

Peripheral nerve injuries are commonly encountered in extremity traumas. Their motor and sensory recovery following microsurgical repair is limited by slow regeneration speed (<1 mm/d) and subsequent muscle atrophy, which are consequently correlated with the activity of local Schwann cells and efficacy of axon outgrowth. To promote post-surgical nerve regeneration, we synthesized a nerve wrap consisting of an aligned polycaprolactone (PCL) fiber shell with a Bletilla striata polysaccharide (BSP) core (APB). Cell experiments demonstrated that the APB nerve wrap markedly promoted neurite outgrowth and Schwann cell migration and proliferation. Animal experiments applying a rat sciatic nerve repair model indicated that the APB nerve wrap restored conduction efficacy of the repaired nerve and the compound action potential as well as contraction force of the related leg muscles. Histology of the downstream nerves disclosed significantly higher fascicle diameter and myelin thickness with the APB nerve wrap compared to those without BSP. Thus, the BSP-loaded nerve wrap is potentially beneficial for the functional recovery after peripheral nerve repair and offers sustained targeted release of a natural polysaccharide with good bioactivity.


Assuntos
Bainha de Mielina , Traumatismos dos Nervos Periféricos , Ratos , Animais , Células de Schwann , Nervo Isquiático , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Polissacarídeos/farmacologia , Regeneração Nervosa/fisiologia
15.
J Rehabil Med ; 54: jrm00323, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35925030

RESUMO

OBJECTIVE: To assess the effects of exoskeleton robot-assisted passive range of motion for induction training in combination with conventional hand rehabilitation in patients with chronic stroke. DESIGN: Single-cohort feasibility study. SUBJECTS: Chronic stroke with severe upper extremity hemiparesis. METHODS: Thirty sessions of therapy over a period of 10 weeks. Each session started with 30 min robot-assisted passive range of motion for the hand, followed by 30 min conventional hand rehabilitation. The Fugl-Meyer Assessment for upper extremity, arm subscore of Motricity Index, Functional Independence Measure and Fugl-Meyer assessment for sensation (Fugl-Meyer assessment-sensory) were conducted at pre-intervention (pre) and after the 16th (16-post) and 30th (30-post) sessions of interventions. RESULTS: Twelve patients with chronic stroke were recruited. The Fugl-Meyer assessment for upper extremity (16-post vs 30-post, p = 0.011), arm subscore of Motricity Index (pre vs 30-post, p = 0.012) and Functional Independence Measure (pre vs 30-post, p = 0.007; 16- post vs 30-post, p = 0.016) improved significantly after the therapy. However, FMA-sensory did not change significantly. CONCLUSION: Exoskeleton robot-assisted passive range of motion of the hand using an exoskeleton can be considered as an induction therapy before starting conventional therapy for hand rehabilitation in patients with chronic stroke. Further randomized control trials are needed to verify the therapeutic benefits.


Assuntos
Robótica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estudos de Viabilidade , Humanos , Amplitude de Movimento Articular , Recuperação de Função Fisiológica , Resultado do Tratamento , Extremidade Superior
16.
ACS Appl Mater Interfaces ; 14(5): 6343-6357, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35080366

RESUMO

Nitric oxide (NO) is an essential endogenous signaling molecule regulating multifaceted physiological functions in the (cardio)vascular, neuronal, and immune systems. Due to the short half-life and location-/concentration-dependent physiological function of NO, translational application of NO as a novel therapeutic approach, however, awaits a strategy for spatiotemporal control on the delivery of NO. Inspired by the magnetic hyperthermia and magneto-triggered drug release featured by Fe3O4 conjugates, in this study, we aim to develop a magnetic responsive NO-release material (MagNORM) featuring dual NO-release phases, namely, burst and steady release, for the selective activation of NO-related physiology and treatment of bacteria-infected cutaneous wound. After conjugation of NO-delivery [Fe(µ-S-thioglycerol)(NO)2]2 with a metal-organic framework (MOF)-derived porous Fe3O4@C, encapsulation of obtained conjugates within the thermo-responsive poly(lactic-co-glycolic acid) (PLGA) microsphere completes the assembly of MagNORM. Through continuous/pulsatile/no application of the alternating magnetic field (AMF) to MagNORM, moreover, burst/intermittent/slow release of NO from MagNORM demonstrates the AMF as an ON/OFF switch for temporal control on the delivery of NO. Under continuous application of the AMF, in particular, burst release of NO from MagNORM triggers an effective anti-bacterial activity against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). In addition to the magneto-triggered bactericidal effect of MagNORM against E. coli-infected cutaneous wound in mice, of importance, steady release of NO from MagNORM without the AMF promotes the subsequent collagen formation and wound healing in mice.


Assuntos
Óxido Ferroso-Férrico/química , Campos Magnéticos , Estruturas Metalorgânicas/química , Microesferas , Óxido Nítrico/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Portadores de Fármacos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Infecções por Escherichia coli/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/farmacologia , Óxido Nítrico/uso terapêutico , Pele/microbiologia , Pele/patologia , Staphylococcus aureus/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
17.
Cells ; 10(10)2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34685727

RESUMO

Multicellular spheroids show three-dimensional (3D) organization with extensive cell-cell and cell-extracellular matrix interactions. Owing to their native tissue-mimicking characteristics, mesenchymal stem cell (MSC) spheroids are considered promising as implantable therapeutics for stem cell therapy. Herein, we aim to further enhance their therapeutic potential by tuning the cultivation parameters and thus the inherent niche of 3D MSC spheroids. Significantly increased expression of multiple pro-regenerative paracrine signaling molecules and immunomodulatory factors by MSCs was observed after optimizing the conditions for spheroid culture. Moreover, these alterations in cellular behaviors may be associated with not only the hypoxic niche developed in the spheroid core but also with the metabolic reconfiguration of MSCs. The present study provides efficient methods for manipulating the therapeutic capacity of 3D MSC spheroids, thus laying solid foundations for future development and clinical application of spheroid-based MSC therapy for regenerative medicine.


Assuntos
Imunomodulação , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Nicho de Células-Tronco , Autofagia/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Hidrogéis/farmacologia , Imunomodulação/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Comunicação Parácrina/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Nicho de Células-Tronco/efeitos dos fármacos
18.
ACS Appl Mater Interfaces ; 13(32): 38090-38104, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34342219

RESUMO

Much effort has been focused on novel nanomedicine for cancer therapy. However, tumor hypoxia limits the efficacy of various cancer therapeutics. Herein, we constructed a self-sufficient hybrid enzyme-based silk fibroin hydrogel system, consisting of Pt-decorated hollow Ag-Au trimetallic nanocages (HGN@Pt) and glucose oxidase (GOx), to supply O2 continuously and consume glucose concurrently and, thereby, synergistically enhance the anti-cancer efficacy of a combined starvation and photothermal therapy operating in a hypoxic tumor microenvironment. Thanks to the cooperative effects of the active surface atoms (resulting from the island-like features of the Pt coating), the intrinsically hollow structure, and the strain effect induced by the trimetallic composition, HGN@Pt displayed efficient catalase-like activity. The enhancement in the generation of O2 through the decomposition of H2O2 mediated by the as-designed nanozyme was greater than 400% when compared with that of hollow Ag-Pt bimetallic nanospheres or tiny Pt nanoparticles. Moreover, in the presence of HGN@Pt, significant amounts of O2 could be generated within a few minutes, even in an acidic buffer solution (pH 5.8-6.5) containing a low concentration of H2O2 (100-500 µM). Because HGN@Pt exhibited a strong surface plasmon resonance peak in the near-infrared wavelength range, it could be used as a photothermal agent for hyperthermia therapy. Furthermore, GOx was released gradually from the SF hydrogel into the tumor microenvironment to mediate the depletion of glucose, leading to glucose starvation-induced cancer cell death. Finally, the O2 supplied by HGN@Pt overcame the hypoxia of the microenvironment and, thereby, promoted the starvation therapeutic effect of the GOx-mediated glucose consumption. Meanwhile, the GOx-produced H2O2 from the oxidation of glucose could be used to regenerate O2 and, thereby, construct a complementary circulatory system. Accordingly, this study presents a self-sufficient hybrid enzyme-based system that synergistically alleviates tumor hypoxia and induces an anti-cancer effect when combined with irradiation of light from a near-infrared laser.


Assuntos
Nanopartículas/uso terapêutico , Neoplasias/terapia , Terapia Fototérmica/métodos , Hipóxia Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos BALB C
19.
Adv Healthc Mater ; 10(11): e2100024, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33890420

RESUMO

Scaffolds for tissue engineering aim to mimic the native extracellular matrix (ECM) that provides physical support and biochemical signals to modulate multiple cell behaviors. However, the majority of currently used biomaterials are oversimplified and therefore fail to provide a niche required for the stimulation of tissue regeneration. In the present study, 3D decellularized ECM (dECM) scaffolds derived from mesenchymal stem cell (MSC) spheroids and with intricate matrix composition are developed. Specifically, application of macromolecular crowding (MMC) to MSC spheroid cultures facilitate ECM assembly in a 3D configuration, resulting in the accumulation of ECM and associated bioactive components. Decellularized 3D dECM constructs produced under MMC are able to adequately preserve the microarchitecture of structural ECM components and are characterized by higher retention of growth factors. This results in a stronger proangiogenic bioactivity as compared to constructs produced under uncrowded conditions. These dECM scaffolds can be homogenously populated by endothelial cells, which direct the macroassembly of the structures into larger cell-carrying constructs. Application of empty scaffolds enhances intrinsic revascularization in vivo, indicating that the 3D dECM scaffolds represent optimal proangiogenic bioactive blocks for the construction of larger engineered tissue constructs.


Assuntos
Células-Tronco Mesenquimais , Engenharia Tecidual , Células Endoteliais , Matriz Extracelular , Células-Tronco , Alicerces Teciduais
20.
Mater Sci Eng C Mater Biol Appl ; 120: 111753, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545894

RESUMO

Corneal transplantation is currently the only approach to cure corneal blindness. Cell-based strategies that employ corneal endothelial cells (CECs) grown on supporting biomaterials hold great promise as possible alternative therapies for treating corneal endothelial dysfunction. Nevertheless, most biomaterials are used merely because of their robust mechanical properties, providing passive physical support for the transplantation of CEC monolayers. Based on the versatility of curcumin in ophthalmic applications, this study aims to develop a multifunctional scaffold system that can not only support the function and transplantation of CECs but also prevents post-engraftment complications by sustained curcumin release, thus enhancing the long-term success of CEC engraftment. Curcumin-loaded lipid-poly(lactic-co-glycolic acid) (PLGA; Cur@MPs) hybrid microparticles (MPs) fabricated using an oil-in-water single emulsion method are embedded into gelatin-based scaffolds. The anti-inflammatory, antioxidative, and anti-angiogenic potentials of the developed scaffolds and their capacity in supporting CEC monolayer formation are evaluated. The Cur@MPs are capable of promoting CEC proliferation, protecting CECs from oxidative stress-induced cell death via modulating Nrf2/HO-1 signaling axis, suppressing the secretion of pro-inflammatory cytokines by macrophages, and inhibiting the migration and angiogenesis of vascular endothelial cells. By incorporating the Cur@MPs into a thin gelatin membrane, the fabricated scaffold is able to support the growth and organization of CECs into a polygonal morphology with tight junctions. These experimental results demonstrate the potential of the Cur@MPs-loaded gelatin scaffold for actively supporting the survival and function of CEC monolayers after transplantation.


Assuntos
Curcumina , Curcumina/farmacologia , Células Endoteliais , Endotélio Corneano , Gelatina , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA