Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Comput Neurosci ; 42(2): 177-185, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27942935

RESUMO

Developing networks of neural systems can exhibit spontaneous, synchronous activities called neural bursts, which can be important in the organization of functional neural circuits. Before the network matures, the activity level of a burst can reverberate in repeated rise-and-falls in periods of hundreds of milliseconds following an initial wave-like propagation of spiking activity, while the burst itself lasts for seconds. To investigate the spatiotemporal structure of the reverberatory bursts, we culture dissociated, rat cortical neurons on a high-density multi-electrode array to record the dynamics of neural activity over the growth and maturation of the network. We find the synchrony of the spiking significantly reduced following the initial wave and the activities become broadly distributed spatially. The synchrony recovers as the system reverberates until the end of the burst. Using a propagation model we infer the spreading speed of the spiking activity, which increases as the culture ages. We perform computer simulations of the system using a physiological model of spiking networks in two spatial dimensions and find the parameters that reproduce the observed resynchronization of spiking in the bursts. An analysis of the simulated dynamics suggests that the depletion of synaptic resources causes the resynchronization. The spatial propagation dynamics of the simulations match well with observations over the course of a burst and point to an interplay of the synaptic efficacy and the noisy neural self-activation in producing the morphology of the bursts.


Assuntos
Potenciais de Ação , Simulação por Computador , Modelos Neurológicos , Rede Nervosa , Animais , Redes Neurais de Computação , Neurônios , Ratos
2.
Front Hum Neurosci ; 18: 1415904, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873654

RESUMO

Noninvasive brain stimulation (NIBS) techniques, including transcranial direct current stimulation (tDCS) and transcranial random noise stimulation (tRNS), are emerging as promising tools for enhancing cognitive functions by modulating brain activity and enhancing cognitive functions. Despite their potential, the specific and combined effects of tDCS and tRNS on brain functions, especially regarding functional connectivity, cortical inhibition, and memory performance, are not well-understood. This study aims to explore the distinct and combined impacts of tDCS and tRNS on these neural and cognitive parameters. Using a within-subject design, ten participants underwent four stimulation conditions: sham, tDCS, tRNS, and combined tDCS + tRNS. We assessed the impact on resting-state functional connectivity, cortical inhibition via Cortical Silent Period (CSP), and visuospatial memory performance using the Corsi Block-tapping Test (CBT). Our results indicate that while tDCS appears to induce brain lateralization, tRNS has more generalized and dispersive effects. Interestingly, the combined application of tDCS and tRNS did not amplify these effects but rather suggested a non-synergistic interaction, possibly due to divergent mechanistic pathways, as observed across fMRI, CSP, and CBT measures. These findings illuminate the complex interplay between tDCS and tRNS, highlighting their non-additive effects when used concurrently and underscoring the necessity for further research to optimize their application for cognitive enhancement.

3.
Comput Biol Med ; 163: 107213, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37413849

RESUMO

The formation of customized neural networks as the basis of brain functions such as receptive field selectivity, learning or memory depends heavily on the long-term plasticity of synaptic connections. However, the current mean-field population models commonly used to simulate large-scale neural network dynamics lack explicit links to the underlying cellular mechanisms of long-term plasticity. In this study, we developed a new mean-field population model, the plastic density-based neural mass model (pdNMM), by incorporating a newly developed rate-based plasticity model based on the calcium control hypothesis into an existing density-based neural mass model. Derivation of the plasticity model was carried out using population density methods. Our results showed that the synaptic plasticity represented by the resulting rate-based plasticity model exhibited Bienenstock-Cooper-Munro-like learning rules. Furthermore, we demonstrated that the pdNMM accurately reproduced previous experimental observations of long-term plasticity, including characteristics of Hebbian plasticity such as longevity, associativity and input specificity, on hippocampal slices, and the formation of receptive field selectivity in the visual cortex. In conclusion, the pdNMM is a novel approach that can confer long-term plasticity to conventional mean-field neuronal population models.


Assuntos
Plasticidade Neuronal , Neurônios , Neurônios/fisiologia , Plasticidade Neuronal/fisiologia , Aprendizagem/fisiologia , Redes Neurais de Computação , Hipocampo , Modelos Neurológicos
4.
Biomedicines ; 10(7)2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35884892

RESUMO

(1) Background: Quantification of severity of epileptic activities, especially during electrical stimulation, is an unmet need for seizure control and evaluation of therapeutic efficacy. In this study, a parameter ratio derived from constrained square-root cubature Kalman filter (CSCKF) was formulated to quantify the excitability of local neural network and compared with three commonly used indicators, namely, band power, Teager energy operator, and sample entropy, to objectively determine their effectiveness in quantifying the severity of epileptiform discharges in mice. (2) Methods: A set of one normal and four types of epileptic EEGs was generated by a mathematical model. EEG data of epileptiform discharges during two types of electrical stimulation were recorded in 20 mice. Then, EEG segments of 5 s in length before, during and after the real and sham stimulation were collected. Both simulated and experimental data were used to compare the consistency and differences among the performance indicators. (3) Results: For the experimental data, the results of the four indicators were inconsistent during both types of electrical stimulation, although there was a trend that seizure severity changed with the indicators. For the simulated data, when the simulated EEG segments were used, the results of all four indicators were similar; however, this trend did not match the trend of excitability of the model network. In the model output which retained the DC component, except for the CSCKF parameter ratio, the results of the other three indicators were almost identical to those using the simulated EEG. For CSCKF, the parameter ratio faithfully reflected the excitability of the neural network. (4) Conclusion: For common EEG, CSCKF did not outperform other commonly used performance indicators. However, for EEG with a preserved DC component, CSCKF had the potential to quantify the excitability of the neural network and the associated severity of epileptiform discharges.

5.
Neural Netw ; 143: 183-197, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34157643

RESUMO

Despite its success in understanding brain rhythms, the neural mass model, as a low-dimensional mean-field network model, is phenomenological in nature, so that it cannot replicate some of rich repertoire of responses seen in real neuronal tissues. Here, using a colored-synapse population density method, we derived a novel neural mass model, termed density-based neural mass model (dNMM), as the mean-field description of network dynamics of adaptive exponential integrate-and-fire (aEIF) neurons, in which two critical neuronal features, i.e., voltage-dependent conductance-based synaptic interactions and adaptation of firing rate responses, were included. Our results showed that the dNMM was capable of correctly estimating firing rate responses of a neuronal population of aEIF neurons receiving stationary or time-varying excitatory and inhibitory inputs. Finally, it was also able to quantitatively describe the effect of spike-frequency adaptation in the generation of asynchronous irregular activity of excitatory-inhibitory cortical networks. We conclude that in terms of its biological reality and calculation efficiency, the dNMM is a suitable candidate to build significantly large-scale network models involving multiple brain areas, where the neuronal population is the smallest dynamic unit.


Assuntos
Modelos Neurológicos , Sinapses , Potenciais de Ação , Adaptação Fisiológica , Encéfalo , Neurônios
6.
Exp Neurol ; 328: 113264, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32119933

RESUMO

Status epilepticus (SE) is a state of prolonged and repeated seizures that can lead to permanent brain damage or life-threatening conditions. Transcranial direct current stimulation (tDCS) non-invasively provides a polarity-specific electric current to modulate brain excitability. Little is known about the therapeutic potential of tDCS in SE. Here, we aim to determine the tDCS effects on seizure severity, EEG and post-SE consequences in rats with kainic acid (KA)-induced SE. Rats were subjected to cathodal tDCS or sham stimulation over the dorsal hippocampus for 5 days. KA was intraperitoneally injected to induce SE. We used continuous video-EEG recording to monitor seizure activity, immunostaining and Timm staining to evaluate neuron counts and mossy fiber sprouting, and ELISA for Brain-derived neurotrophic factor (BDNF) protein measurement. Two featured EEG patterns, gamma ranged high-frequency polyspikes and low-frequency spike-and-wave complexes, were identified in the hippocampal CA1 of KA-induced SE rats. tDCS elicited a significant decrease in severe seizures of Racine stages 4-5 in KA-induced SE rats. tDCS-treated rats manifested diminished high-frequency oscillation during SE, decreased chronic spontaneous spike activities and mossy fiber sproutings compared to sham. tDCS-treated rats also exhibited significantly lower hippocampal BDNF protein levels than sham immediately and 4 weeks after SE. A positive correlation between the hippocampal BDNF level and the seizure severity of SE was found. Altogether, our results show that repeated cathodal tDCS can mitigate seizure severity, alter ictal EEG pattern and reduce the chronic adverse consequences in KA-induced SE rats, supporting the therapeutic potential of tDCS in severe prolonged epileptic seizures.


Assuntos
Convulsões/fisiopatologia , Estado Epiléptico/fisiopatologia , Estimulação Transcraniana por Corrente Contínua/métodos , Animais , Convulsivantes/toxicidade , Eletroencefalografia , Ácido Caínico/toxicidade , Masculino , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Estado Epiléptico/induzido quimicamente
7.
Brain Behav ; 9(12): e01483, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31749318

RESUMO

INTRODUCTION: The main purpose of this study was to investigate the cerebral areas responsible for winking by observing the activation pattern and learning effects on cerebral cortices by comparing differences in activation pattern during winking before and after learning. METHODS: Sixty-three subjects were recruited, including 22 (11 males; 11 females) who could wink bilaterally and 41 (14 males; 27 females) who could wink unilaterally. Event-related functional magnetic resonance was performed. The subjects were asked to blink and wink according to projected instructions as the events for image analysis. The activation pattern was obtained by contrasting with the baseline images without eyelid movements. Those who could only wink unilaterally were asked to train themselves to wink the other eye. For those who succeeded (n = 24), another imaging study was performed and the results were compared with those before training. RESULTS AND CONCLUSION: Left winking resulted in activation in the left frontal lobe, while right winking resulted in activation in bilateral frontal lobes with predominance on the right side. For the subjects capable of only winking unilaterally, learning to wink on the other side activated similar cortical areas to those in the subjects capable of bilateral winking without training.


Assuntos
Piscadela/fisiologia , Lobo Frontal/diagnóstico por imagem , Adulto , Movimentos Oculares/fisiologia , Feminino , Lobo Frontal/fisiologia , Humanos , Aprendizagem , Imageamento por Ressonância Magnética/métodos , Masculino
8.
eNeuro ; 5(6)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30662939

RESUMO

When incorporating more realistic synaptic dynamics, the computational efficiency of population density methods (PDMs) declines sharply due to the increase in the dimension of master equations. To avoid such a decline, we develop an efficient PDM, termed colored-synapse PDM (csPDM), in which the dimension of the master equations does not depend on the number of synapse-associated state variables in the underlying network model. Our goal is to allow the PDM to incorporate realistic synaptic dynamics that possesses not only finite relaxation time but also short-term plasticity (STP). The model equations of csPDM are derived based on the diffusion approximation on synaptic dynamics and probability density function methods for Langevin equations with colored noise. Numerical examples, given by simulations of the population dynamics of uncoupled exponential integrate-and-fire (EIF) neurons, show good agreement between the results of csPDM and Monte Carlo simulations (MCSs). Compared to the original full-dimensional PDM (fdPDM), the csPDM reveals more excellent computational efficiency because of the lower dimension of the master equations. In addition, it permits network dynamics to possess the short-term plastic characteristics inherited from plastic synapses. The novel csPDM has potential applicability to any spiking neuron models because of no assumptions on neuronal dynamics, and, more importantly, this is the first report of PDM to successfully encompass short-term facilitation/depression properties.


Assuntos
Modelos Neurológicos , Redes Neurais de Computação , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Densidade Demográfica , Potenciais de Ação , Animais , Simulação por Computador , Humanos , Dinâmica não Linear , Fatores de Tempo
9.
Comput Biol Med ; 57: 150-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25557200

RESUMO

Compared with the Monte Carlo method, the population density method is efficient for modeling collective dynamics of neuronal populations in human brain. In this method, a population density function describes the probabilistic distribution of states of all neurons in the population and it is governed by a hyperbolic partial differential equation. In the past, the problem was mainly solved by using the finite difference method. In a previous study, a continuous Galerkin finite element method was found better than the finite difference method for solving the hyperbolic partial differential equation; however, the population density function often has discontinuity and both methods suffer from a numerical stability problem. The goal of this study is to improve the numerical stability of the solution using discontinuous Galerkin finite element method. To test the performance of the new approach, interaction of a population of cortical pyramidal neurons and a population of thalamic neurons was simulated. The numerical results showed good agreement between results of discontinuous Galerkin finite element and Monte Carlo methods. The convergence and accuracy of the solutions are excellent. The numerical stability problem could be resolved using the discontinuous Galerkin finite element method which has total-variation-diminishing property. The efficient approach will be employed to simulate the electroencephalogram or dynamics of thalamocortical network which involves three populations, namely, thalamic reticular neurons, thalamocortical neurons and cortical pyramidal neurons.


Assuntos
Encéfalo/citologia , Encéfalo/fisiologia , Biologia Computacional/métodos , Análise de Elementos Finitos , Células Piramidais/citologia , Tálamo/citologia , Algoritmos , Simulação por Computador , Humanos , Células Piramidais/fisiologia , Tálamo/fisiologia
10.
Comput Biol Med ; 42(4): 458-67, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22277595

RESUMO

The main purpose of this study was to propose a robust algorithm for removing artifacts from the electroencephalographic (EEG) data collected during magnetic resonance imaging (MRI). The core idea of the proposed method was to remove the main gradient artifacts by the maximum cross-correlation method and to remove the residual artifacts by the rolling-ball algorithm and lowpass filtering. The results showed that the proposed algorithm had a better performance and was robust in the sense that its performance was maintained when the sampling rate of EEG data was decreased from 10KHz to 200Hz.


Assuntos
Algoritmos , Artefatos , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA