Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 12(12): 17620-32, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23250281

RESUMO

The practice of meditation has become an interesting research issue in recent decades. Meditation is known to be beneficial for health improvement and illness reduction and many studies on meditation have been made, from both the physiological and psychological points of view. It is a fundamental requirement of meditation practice to be able to sit without body motion. In this study, a novel body motion monitoring and estimation system has been developed. A wireless tri-axis accelerometer is used to measure body motion. Both a mean and maximum motion index is derived from the square summation of three axes. Two experiments were conducted in this study. The first experiment was to investigate the motion index baseline among three leg-crossing postures. The second experiment was to observe posture dynamics for thirty minute's meditation. Twenty-six subjects participated in the experiments. In one experiment, thirteen subjects were recruited from an experienced meditation group (meditation experience > 3 years); and the other thirteen subjects were beginners (meditation experience < 1 years). There was a significant posture stability difference between both groups in terms of either mean or maximum parameters (p < 0.05), according to the results of the experiment. Results from another experiment showed that the motion index is different for various postures, such as full-lotus < half-lotus < non-lotus.


Assuntos
Meditação , Postura/fisiologia , Tecnologia sem Fio , Adulto , Feminino , Corpo Humano , Humanos , Perna (Membro)/fisiologia , Masculino
2.
ACS Appl Mater Interfaces ; 12(13): 15183-15193, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32167283

RESUMO

Syngas, consisting of equimolar CO and H2, is an important feedstock for large-scale production of a wide range of commodity chemicals including aldehyde, methanol, ammonia, and other oxygenated chemicals. Dry reforming of methane (DRM), proceeding by reacting greenhouse gases, CO2 and CH4, at high temperatures in the presence of a metal catalyst, is considered one of the most environmentally friendly routes for syngas production. Nevertheless, nonprecious metal-based catalysts, which can operate at relatively low temperatures for high product yields and selectivities, are required to drive the DRM process for industrial applications effectively. Here, we developed NiCo@C nanocomposites from a corresponding NiCo-based bimetallic metal-organic framework (MOF) to serve as high-performance catalysts for the DRM process, achieving high turnover frequencies (TOF) at low temperatures (>5.7 s-1 at 600 °C) and high product selectivities (H2/CO = 0.9 at 700 °C). The incorporation of Co in Ni catalysts improves the operation stability and light-off stability. The present development for MOF-derived nanocomposites opens a new horizon for design of DRM catalysts.

3.
Nanoscale ; 11(29): 13709-13713, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31194206

RESUMO

Cuprous oxide (Cu2O) that has a direct bandgap corresponding to visible-light absorption exhibits versatile functionalities, which are appealing to solar cell, photocatalyst, bio-sensing and water splitting applications. However, photolysis stability has long been a problem for Cu2O under light exposure and a humid environment. Here, we found that the Cu2O layer grown on Cu nanowires (CuNWs) with high-density nanoscale twin boundaries can maintain the integrity of Cu/Cu2O core-shell structure under ambient air conditions for more than one year. The Cu2O on nanotwinned CuNWs also demonstrates much higher stability in humid air and water with light exposure than its counterpart on nanocrystalline CuNWs. The superior photolysis stability of Cu2O is attributed to (1) photoelectrons drained to the Cu core, (2) limited vacancy sources in the Cu2O layer and (3) the suppressed out-diffusion of Cu cations through the oxide layer. It is suggested that the presence of nanoscale twin boundaries modifies the atomic surface structure of the CuNWs and alters the photolysis reaction of Cu2O.

4.
ACS Appl Mater Interfaces ; 11(27): 24096-24106, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185711

RESUMO

A bubble-releasing assisted pulse electrodeposition method was developed to create metallic alloy, NiFe, nanotube arrays in one step. The NiFe alloy nanotube array exhibited excellent bifunctional electrolytic activities, achieving low overpotentials of 100 mV for the hydrogen evolution reaction and 236 mV for the oxygen evolution reaction at 10 mA cm-2, both in 1 M KOH at room temperature. For overall water splitting, the NiFe alloy nanotube array delivered 10 mA cm-2 at an ultralow cell voltage of 1.58 V, among the top tier of the state-of-the-art bifunctional electrocatalysts. The NiFe alloy nanotube array also exhibited ultrastability at high current densities, experiencing only a minor chronoamperometric decay of 6.5% after a 24 h operation at 400 mA cm-2. The success of the present binder-free nanotube array-based electrode can be attributed to the much enlarged reaction surface area, one-dimensionally guided charge transport and mass transfer offered by the nanotube structure, and improved product crystallinity provided by the pulse current electrodeposition. The nanotube array structure proves to be a promising new architecture design for electrocatalysts.

5.
Nat Commun ; 9(1): 340, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362356

RESUMO

Cavitation and hollow structures can be introduced in nanomaterials via the Kirkendall effect in an alloying or reaction system. By introducing dense nanoscale twins into copper nanowires (CuNWs), we change the surface structure and prohibit void formation in oxidation of the nanowires. The nanotwinned CuNW exhibits faceted surfaces of very few atomic steps as well as a very low vacancy generation rate at copper/oxide interfaces. Together they lower the oxidation rate and eliminate void formation at the copper/oxide interface. We propose that the slow reaction rate together with the highly effective vacancy absorption at interfaces leads to a lattice shift in the oxidation reaction. Our findings suggest that the nanoscale Kirkendall effect can be manipulated by controlling the internal and surface crystal defects of nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA