Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 13(9): 11260-11274, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23109851

RESUMO

Mangiferin is a natural xanthonoid with various biological activities. Quantification of mangiferin in fruit peel, pulp, and seed kernel was carried out in 11 Chinese mango (Mangifera indica L.) cultivars. The highest mangiferin content was found in the peel of Lvpimang (LPM) fruit (7.49 mg/g DW). Efficient purification of mangiferin from mango fruit peel was then established for the first time by combination of macroporous HPD100 resin chromatography with optimized high-speed counter-current chromatography (HSCCC). Purified mangiferin was identified by both HPLC and LC-MS, and it showed higher DPPH(•) free-radical scavenging capacities and ferric reducing ability of plasma (FRAP) than by l-ascorbic acid (Vc) or Trolox. In addition, it showed significant protective effects on human umbilical vein endothelial cells (HUVEC) under H(2)O(2)-induced stress. Cells treated with mangiferin resulted in significant enhanced cell survival under of H(2)O(2) stress. Therefore, mangiferin from mango fruit provides a promising perspective for the prevention of oxidative stress-associated diseases.


Assuntos
Sequestradores de Radicais Livres/metabolismo , Peróxido de Hidrogênio/toxicidade , Mangifera/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Xantonas/metabolismo , China , Cromatografia Líquida de Alta Pressão , Sequestradores de Radicais Livres/química , Frutas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Mangifera/química , Extratos Vegetais/química , Extratos Vegetais/metabolismo
2.
Mitochondrial DNA B Resour ; 5(1): 738-739, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33366727

RESUMO

In this study, we firstly reported the complete chloroplast (cp) genome sequences of the Mangifera sylvatica from Nanning, Guangxi province, China. The complete wild mango cp genome size is 158063 bp with a typical small single-copy region (SSC, 18340 bp), a large single-copy region (LSC, 87008 bp) and a pair of inverted repeats (IRs, 26379 bp and 26379 bp respectively). Out of 112 unique annotated genes in mango cp genome, 78 found to be protein coding, 30 to be tRNA and 4 rRNA genes. Besides, we found 51 microsatellite sequences (SSRs) in the cp genome. Sequence alignment and ML analysis of 29 full plastome data revealed M. sylvatica shares the closest relationship with cultivated mango (M. indica) and form a sister group with Rhus chinensis within Anacardiaceae.

3.
Genome Biol ; 21(1): 60, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32143734

RESUMO

BACKGROUND: Mango is one of the world's most important tropical fruits. It belongs to the family Anacardiaceae, which includes several other economically important species, notably cashew, sumac and pistachio from other genera. Many species in this family produce family-specific urushiols and related phenols, which can induce contact dermatitis. RESULTS: We generate a chromosome-scale genome assembly of mango, providing a reference genome for the Anacardiaceae family. Our results indicate the occurrence of a recent whole-genome duplication (WGD) event in mango. Duplicated genes preferentially retained include photosynthetic, photorespiration, and lipid metabolic genes that may have provided adaptive advantages to sharp historical decreases in atmospheric carbon dioxide and global temperatures. A notable example of an extended gene family is the chalcone synthase (CHS) family of genes, and particular genes in this family show universally higher expression in peels than in flesh, likely for the biosynthesis of urushiols and related phenols. Genome resequencing reveals two distinct groups of mango varieties, with commercial varieties clustered with India germplasms and demonstrating allelic admixture, and indigenous varieties from Southeast Asia in the second group. Landraces indigenous in China formed distinct clades, and some showed admixture in genomes. CONCLUSIONS: Analysis of chromosome-scale mango genome sequences reveals photosynthesis and lipid metabolism are preferentially retained after a recent WGD event, and expansion of CHS genes is likely associated with urushiol biosynthesis in mango. Genome resequencing clarifies two groups of mango varieties, discovers allelic admixture in commercial varieties, and shows distinct genetic background of landraces.


Assuntos
Evolução Molecular , Genoma de Planta , Mangifera/genética , Aciltransferases/genética , Domesticação , Frutas/genética , Variação Genética , Mangifera/metabolismo , Fenóis/metabolismo , Pigmentação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA