Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Planta ; 239(4): 803-16, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24385091

RESUMO

Leaf rolling is receiving considerable attention as an important agronomic trait in rice (Oryza sativa L.). However, little has been known on the molecular mechanism of rice leaf rolling, especially the abaxial rolling. We identified a novel abaxially curled and drooping leaf-dominant mutant from a T1 transgenic rice line. The abaxially curled leaf phenotypes, co-segregating with the inserted transferred DNA, were caused by overexpression of a zinc finger homeodomain class homeobox transcription factor (OsZHD1). OsZHD1 exhibited a constitutive expression pattern in wild-type plants and accumulated in the developing leaves and panicles. Artificial overexpression of OsZHD1 or its closest homolog OsZHD2 induced the abaxial leaf curling. Histological analysis indicated that both the increased number and the abnormal arrangement of bulliform cells in leaf were responsible for the abaxially curled leaves. We herein reported OsZHD1 with key roles in rice morphogenesis, especially in the modulating of leaf rolling, which provided a novel insight into the molecular mechanism of leaf development in rice.


Assuntos
Oryza/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes Reporter , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mutagênese Insercional , Oryza/citologia , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fenótipo , Filogenia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco
2.
Transgenic Res ; 23(4): 643-55, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24792034

RESUMO

Rice production and seed storage are confronted with grain deterioration and loss of seed viability. Some members of the lipoxygenase (LOX) family function in degradation of storage lipids during the seed germination, but little is known about their influence on seed longevity during storage. We characterized the role of rice OsLOX2 gene in seed germination and longevity via over-expression and knock-down approaches. Abundant expression of OsLOX2 was detected in panicles, roots, and stems, but not in leaves. Moreover, OsLOX2 was highly induced during germination. OsLOX2 protein, located in the cytoplasm, showed a wide range of temperature adaptation (20-50 °C) and a substrate preference to linoleic acid. Lines over-expressing OsLOX2 showed accelerated seed germination under normal condition and lower seed viability after accelerated aging. RNA interference (RNAi) of OsLOX2 caused delayed germination and enhanced seed longevity. RNAi lines with strongly repressed OsLOX2 activity completely lost the capability of germination after accelerated aging. More lipid hydroperoxide were found in OE15 than the control, but less in RNAi lines than in the WT Nipponbare. Therefore, OsLOX2 acts in opposite directions during seed germination and longevity during storage. Appropriate repression of the OsLOX2 gene may delay the aging process during the storage without compromising germination under normal conditions.


Assuntos
Germinação/genética , Lipoxigenase/metabolismo , Longevidade/genética , Oryza/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Sementes/química , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lipoxigenase/química , Lipoxigenase/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , RNA Interferente Pequeno/genética , Sementes/metabolismo , Frações Subcelulares
3.
Environ Geochem Health ; 35(6): 767-78, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23719663

RESUMO

Paddy rice (Oryza sativa L.) is a staple food and one of the major sources of dietary arsenic (As) and cadmium (Cd) in Asia. A field experiment was conducted to investigate the effects of four water management regimes (aerobic, intermittent irrigation, conventional irrigation and flooding) on As and Cd accumulation in seven major rice cultivars grown in Zhejiang province, east China. With increasing irrigation from aerobic to flooded conditions, the soil HCl-extractable As concentrations increased significantly and the HCl-extractable Cd concentrations decreased significantly. These trends were consistent with the As and Cd concentrations in the straw, husk and brown rice. Water management both before and after the full tillering stage affected As and Cd accumulation in the grains. The intermittent and conventional treatments produced higher grain yields than the aerobic and flooded treatments. Cd concentrations in brown rice varied 13.1-40.8 times and As varied 1.75-8.80 times among the four water management regimes. Cd and As accumulation in brown rice varied among the rice cultivars, with Guodao 6 (GD6) was a low Cd but high-As-accumulating cultivar while Indonesia (IR) and Yongyou 9 (YY9) were low As but high-Cd-accumulating cultivars. Brown rice Cd and As concentrations in the 7 cultivars were significantly negatively correlated. The results indicate that As and Cd accumulated in rice grains with opposite trends that were influenced by both water management and rice cultivar. Production of 'safe' rice with respect to As and Cd might be possible by balancing water management and rice cultivar according to the severity of soil pollution.


Assuntos
Agricultura/métodos , Arsênio/metabolismo , Cádmio/metabolismo , Oryza/metabolismo , Poluentes do Solo/metabolismo , China , Monitoramento Ambiental , Especificidade da Espécie , Espectrometria de Fluorescência , Espectrofotometria Atômica
4.
Front Plant Sci ; 8: 987, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28642782

RESUMO

Acyl carrier proteins (ACPs) are a group of small acidic proteins functioning as important cofactors in the de novo synthesis of fatty acids. In Arabidopsis, ACPs are encoded by a small gene family comprising five plastid members, AtACP1 to AtACP5, and three mitochondrial members. The biological functions and the transcriptional responses to abiotic stresses of most AtACPs have yet to be elucidated. The present study extends previous findings and provides new knowledge on the function of ACPs by examining the responses of AtACP-encoding genes to several abiotic stresses and, in particular, the role of AtACP5 in the adaptation to salt stress. Phylogenetic analysis showed that AtACP1, AtACP2, AtACP3, and AtACP5 can be classified into one group and separated from a group comprising AtACP4 and ACP homologs from related species. Quantitative RT-PCR analysis revealed that the expression of AtACP1, AtACP2, and AtACP3 was induced by drought. Both iron deficiency and nitrogen starvation resulted in down-regulation of AtACP4. The most pronounced response was observed for AtACP5, the expression of which was dramatically decreased by salt stress. Knock-out of AtACP5 showed increased sensitivity to NaCl stress, whereas transgenic lines overexpressing AtACP5 displayed increased salt tolerance relative to the wild-type. Overexpression of AtACP5 further led to an altered composition of fatty acids, mainly a decrease of oleic acid (C18:1) and an increase of palmitic acid (C16:0), and to a lower Na+/K+ ratio when compared to the salt stressed wild-type. The comprehensive transcriptional information on the small plastid AtACP gene family in response to various abiotic stresses and the further investigation of the AtACP5 indicate that AtACP5 might be critical for salt tolerance through alterations of the composition of fatty acids and, subsequently, the Na+/K+ ratio.

5.
Environ Sci Pollut Res Int ; 20(9): 6306-16, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23589260

RESUMO

The aims of this study are to investigate whether and how the nitrogen form (nitrate (NO3 (-)) versus ammonium (NH4 (+))) influences cadmium (Cd) uptake and translocation and subsequent Cd phytoextraction by the hyperaccumulator species Sedum plumbizincicola. Plants were grown hydroponically with N supplied as either NO3 (-) or NH4 (+). Short-term (36 h) Cd uptake and translocation were determined innovatively and quantitatively using a positron-emitting (107)Cd tracer and positron-emitting tracer imaging system. The results show that the rates of Cd uptake by roots and transport to the shoots in the NO3 (-) treatment were more rapid than in the NH4 (+) treatment. After uptake for 36 h, 5.6 (0.056 µM) and 29.0 % (0.290 µM) of total Cd in the solution was non-absorbable in the NO3 (-) and NH4 (+) treatments, respectively. The local velocity of Cd transport was approximately 1.5-fold higher in roots (3.30 cm h(-1)) and 3.7-fold higher in shoots (10.10 cm h(-1)) of NO3 (-)- than NH4 (+)-fed plants. Autoradiographic analysis of (109)Cd reveals that NO3 (-) nutrition enhanced Cd transportation from the main stem to branches and young leaves. Moreover, NO3 (-) treatment increased Cd, Ca and K concentrations but inhibited Fe and P in the xylem sap. In a 21-day hydroponic culture, shoot biomass and Cd concentration were 1.51 and 2.63 times higher in NO3 (-)- than in NH4 (+)-fed plants. We conclude that compared with NH4 (+), NO3 (-) promoted the major steps in the transport route followed by Cd from solution to shoots in S. plumbizincicola, namely its uptake by roots, xylem loading, root-to-shoot translocation in the xylem and uploading to the leaves. S. plumbizincicola prefers NO3 (-) nutrition to NH4 (+) for Cd phytoextraction.


Assuntos
Cádmio/metabolismo , Nitratos/metabolismo , Sedum/metabolismo , Biodegradação Ambiental , Transporte Biológico/fisiologia , Cádmio/química , Fertilizantes , Nitratos/química , Raízes de Plantas , Brotos de Planta , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA