Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Mol Biol ; 114(3): 36, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598012

RESUMO

Increasing evidence indicates a strong correlation between the deposition of cuticular waxes and drought tolerance. However, the precise regulatory mechanism remains elusive. Here, we conducted a comprehensive transcriptome analysis of two wheat (Triticum aestivum) near-isogenic lines, the glaucous line G-JM38 rich in cuticular waxes and the non-glaucous line NG-JM31. We identified 85,143 protein-coding mRNAs, 4,485 lncRNAs, and 1,130 miRNAs. Using the lncRNA-miRNA-mRNA network and endogenous target mimic (eTM) prediction, we discovered that lncRNA35557 acted as an eTM for the miRNA tae-miR6206, effectively preventing tae-miR6206 from cleaving the NAC transcription factor gene TaNAC018. This lncRNA-miRNA interaction led to higher transcript abundance for TaNAC018 and enhanced drought-stress tolerance. Additionally, treatment with mannitol and abscisic acid (ABA) each influenced the levels of tae-miR6206, lncRNA35557, and TaNAC018 transcript. The ectopic expression of TaNAC018 in Arabidopsis also improved tolerance toward mannitol and ABA treatment, whereas knocking down TaNAC018 transcript levels via virus-induced gene silencing in wheat rendered seedlings more sensitive to mannitol stress. Our results indicate that lncRNA35557 functions as a competing endogenous RNA to modulate TaNAC018 expression by acting as a decoy target for tae-miR6206 in glaucous wheat, suggesting that non-coding RNA has important roles in the regulatory mechanisms responsible for wheat stress tolerance.


Assuntos
Arabidopsis , MicroRNAs , RNA Longo não Codificante , RNA Endógeno Competitivo , RNA Longo não Codificante/genética , Ácido Abscísico/farmacologia , Arabidopsis/genética , Manitol , MicroRNAs/genética , RNA Mensageiro , Triticum/genética , Ceras
2.
Plant Biotechnol J ; 22(8): 2093-2103, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38491985

RESUMO

Genetic transformation is a critical tool for gene editing and genetic improvement of plants. Although many model plants and crops can be genetically manipulated, genetic transformation systems for fruit trees are either lacking or perform poorly. We used Rhizobium rhizogenes to transfer the target gene into the hairy roots of Malus domestica and Actinidia chinensis. Transgenic roots were generated within 3 weeks, with a transgenic efficiency of 78.8%. Root to shoot conversion of transgenic hairy roots was achieved within 11 weeks, with a regeneration efficiency of 3.3%. Finally, the regulatory genes involved in stem cell activity were used to improve shoot regeneration efficiency. MdWOX5 exhibited the most significant effects, as it led to an improved regeneration efficiency of 20.6% and a reduced regeneration time of 9 weeks. Phenotypes of the overexpression of RUBY system mediated red roots and overexpression of MdRGF5 mediated longer root hairs were observed within 3 weeks, suggesting that the method can be used to quickly screen genes that influence root phenotype scores through root performance, such as root colour, root hair, and lateral root. Obtaining whole plants of the RUBY system and MdRGF5 overexpression lines highlights the convenience of this technology for studying gene functions in whole plants. Overall, we developed an optimized method to improve the transformation efficiency and stability of transformants in fruit trees.


Assuntos
Raízes de Plantas , Brotos de Planta , Plantas Geneticamente Modificadas , Transformação Genética , Plantas Geneticamente Modificadas/genética , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Actinidia/genética , Actinidia/microbiologia , Malus/genética , Malus/microbiologia , Agrobacterium/genética , Árvores/genética
3.
Pathogens ; 13(7)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39057819

RESUMO

Fusarium graminearum is the primary causative agent of Fusarium head blight (FHB), a devastating disease affecting cereals globally. The high-mobility group (HMG) of non-histone proteins constitutes vital architectural elements within chromatin, playing diverse roles in various biological processes in eukaryotic cells. Nonetheless, the specific functions of HMG proteins in F. graminearum have yet to be elucidated. Here, we identified 10 HMG proteins in F. graminearum and extensively characterized the biological roles of one HMGB protein, FgNhp6. We constructed the FgNhp6 deletion mutant and its complementary strains. With these strains, we confirmed the nuclear localization of FgNhp6 and discovered that the absence of FgNhp6 led to reduced radial growth accompanied by severe pigmentation defects, a significant reduction in conidial production, and a failure to produce perithecia. The ∆FgNhp6 mutant exhibited a markedly reduced pathogenicity on wheat coleoptiles and spikes, coupled with a significant increase in deoxynivalenol production. An RNA sequencing (RNA-seq) analysis indicated that FgNhp6 deletion influenced a wide array of metabolic pathways, particularly affecting several secondary metabolic pathways, such as sterol biosynthesis and aurofusarin biosynthesis. The findings of this study highlight the essential role of FgNhp6 in the regulation of the asexual and sexual reproduction, deoxynivalenol (DON) production, and pathogenicity of F. graminearum.

4.
Nat Commun ; 15(1): 6630, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103337

RESUMO

Unfavourable conditions, such as prolonged drought and high salinity, pose a threat to the survival and agricultural yield of plants. The phytohormone ABA plays a key role in the regulation of plant stress adaptation and is often maintained at high levels for extended periods. While much is known about ABA signal perception and activation in the early signalling stage, the molecular mechanism underlying desensitization of ABA signalling remains largely unknown. Here we demonstrate that in the endoplasmic reticulum (ER)-Golgi network, the key regulators of ABA signalling, SnRK2.2/2.3, undergo N-glycosylation, which promotes their redistribution from the nucleus to the peroxisomes in Arabidopsis roots and influences the transcriptional response in the nucleus during prolonged ABA signalling. On the peroxisomal membrane, SnRK2s can interact with glucose-6-phosphate (G6P)/phosphate translocator 1 (GPT1) to maintain NADPH homeostasis through increased activity of the peroxisomal oxidative pentose phosphate pathway (OPPP). The resulting maintenance of NADPH is essential for the modulation of hydrogen peroxide (H2O2) accumulation, thereby relieving ABA-induced root growth inhibition. The subcellular dynamics of SnRK2s, mediated by N-glycosylation suggest that ABA responses transition from transcriptional regulation in the nucleus to metabolic processes in the peroxisomes, aiding plants in adapting to long-term environmental stress.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , NADP , Peroxissomos , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Arabidopsis/metabolismo , Arabidopsis/genética , Peroxissomos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Glicosilação , Ácido Abscísico/metabolismo , NADP/metabolismo , Peróxido de Hidrogênio/metabolismo , Retículo Endoplasmático/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Núcleo Celular/metabolismo , Complexo de Golgi/metabolismo , Via de Pentose Fosfato , Reguladores de Crescimento de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA