Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Mol Cell Proteomics ; 23(11): 100848, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39321873

RESUMO

Early pregnancy loss (EPL) is a common event in human reproduction and is classified into histological subtypes such as hydropic abortion (HA) and hydatidiform moles, including complete hydatidiform moles (CHMs) and partial hydatidiform moles (PHMs). However, accurate diagnosis and improved patient management remain challenging due to high rates of misdiagnosis and diverse prognostic risks. Therefore, diagnostic biomarkers for EPL are urgently needed. Our study aimed to identify biomarkers for EPL through comprehensive proteomic analysis. Ten CHMs, six PHMs, ten HAs, and 10 normal control products of conception were used to obtain a proteomic portrait. Parallel reaction monitoring-targeted proteomic and regression analyses were used to verify and select the diagnostic signatures. Finally, 14 proteins were selected and a panel of diagnostic classifiers (DLK1, SPTB/COL21A1, and SAR1A) was built to represent the CHM, PHM, and normal control groups (area under the receiver operating characteristic curve = 0.900, 0.804/0.885, and 0.991, respectively). This high diagnostic power was further validated in another independent cohort (n = 148) by immunohistochemistry (n = 120) and Western blot analyses (n = 28). The protein SPTB was selected for further biological behavior experiments in vitro. Our data suggest that SPTB maintains trophoblast cell proliferation, angiogenesis, cell motility, and the cytoskeleton network. This study provides a comprehensive proteomic portrait and identifies potential diagnostic biomarkers. These findings enhance our understanding of EPL pathogenesis and offer novel targets for diagnosis and therapeutic interventions.

2.
Syst Biol ; 73(5): 807-822, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38940001

RESUMO

Maximum likelihood (ML) phylogenetic inference is widely used in phylogenomics. As heuristic searches most likely find suboptimal trees, it is recommended to conduct multiple (e.g., 10) tree searches in phylogenetic analyses. However, beyond its positive role, how and to what extent multiple tree searches aid ML phylogenetic inference remains poorly explored. Here, we found that a random starting tree was not as effective as the BioNJ and parsimony starting trees in inferring the ML gene tree and that RAxML-NG and PhyML were less sensitive to different starting trees than IQ-TREE. We then examined the effect of the number of tree searches on ML tree inference with IQ-TREE and RAxML-NG, by running 100 tree searches on 19,414 gene alignments from 15 animal, plant, and fungal phylogenomic datasets. We found that the number of tree searches substantially impacted the recovery of the best-of-100 ML gene tree topology among 100 searches for a given ML program. In addition, all of the concatenation-based trees were topologically identical if the number of tree searches was ≥10. Quartet-based ASTRAL trees inferred from 1 to 80 tree searches differed topologically from those inferred from 100 tree searches for 6/15 phylogenomic datasets. Finally, our simulations showed that gene alignments with lower difficulty scores had a higher chance of finding the best-of-100 gene tree topology and were more likely to yield the correct trees.


Assuntos
Classificação , Filogenia , Classificação/métodos , Funções Verossimilhança , Animais , Genômica/métodos , Plantas/classificação , Plantas/genética
3.
Proc Natl Acad Sci U S A ; 119(15): e2120787119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35385357

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy of T cell progenitors, known to be a heterogeneous disease in pediatric and adult patients. Here we attempted to better understand the disease at the molecular level based on the transcriptomic landscape of 707 T-ALL patients (510 pediatric, 190 adult patients, and 7 with unknown age; 599 from published cohorts and 108 newly investigated). Leveraging the information of gene expression enabled us to identify 10 subtypes (G1­G10), including the previously undescribed one characterized by GATA3 mutations, with GATA3R276Q capable of affecting lymphocyte development in zebrafish. Through associating with T cell differentiation stages, we found that high expression of LYL1/LMO2/SPI1/HOXA (G1­G6) might represent the early T cell progenitor, pro/precortical/cortical stage with a relatively high age of disease onset, and lymphoblasts with TLX3/TLX1 high expression (G7­G8) could be blocked at the cortical/postcortical stage, while those with high expression of NKX2-1/TAL1/LMO1 (G9­G10) might correspond to cortical/postcortical/mature stages of T cell development. Notably, adult patients harbored more cooperative mutations among epigenetic regulators, and genes involved in JAK-STAT and RAS signaling pathways, with 44% of patients aged 40 y or above in G1 bearing DNMT3A/IDH2 mutations usually seen in acute myeloid leukemia, suggesting the nature of mixed phenotype acute leukemia.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Transcriptoma , Criança , Humanos , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética
4.
BMC Biol ; 22(1): 143, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937802

RESUMO

BACKGROUND: The endothelial-to-hematopoietic transition (EHT) process during definitive hematopoiesis is highly conserved in vertebrates. Stage-specific expression of transposable elements (TEs) has been detected during zebrafish EHT and may promote hematopoietic stem cell (HSC) formation by activating inflammatory signaling. However, little is known about how TEs contribute to the EHT process in human and mouse. RESULTS: We reconstructed the single-cell EHT trajectories of human and mouse and resolved the dynamic expression patterns of TEs during EHT. Most TEs presented a transient co-upregulation pattern along the conserved EHT trajectories, coinciding with the temporal relaxation of epigenetic silencing systems. TE products can be sensed by multiple pattern recognition receptors, triggering inflammatory signaling to facilitate HSC emergence. Interestingly, we observed that hypoxia-related signals were enriched in cells with higher TE expression. Furthermore, we constructed the hematopoietic cis-regulatory network of accessible TEs and identified potential TE-derived enhancers that may boost the expression of specific EHT marker genes. CONCLUSIONS: Our study provides a systematic vision of how TEs are dynamically controlled to promote the hematopoietic fate decisions through transcriptional and cis-regulatory networks, and pre-train the immunity of nascent HSCs.


Assuntos
Elementos de DNA Transponíveis , Hematopoese , Células-Tronco Hematopoéticas , Análise de Célula Única , Animais , Elementos de DNA Transponíveis/genética , Análise de Célula Única/métodos , Camundongos , Hematopoese/genética , Humanos , Células-Tronco Hematopoéticas/metabolismo , Células Endoteliais/metabolismo
5.
Funct Integr Genomics ; 24(4): 135, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39117866

RESUMO

Gene co-expression networks may encode hitherto inadequately recognized vulnerabilities for adult gliomas. By identifying evolutionally conserved gene co-expression modules around EGFR (EM) or PDGFRA (PM), we recently proposed an EM/PM classification scheme, which assigns IDH-wildtype glioblastomas (GBM) into the EM subtype committed in neural stem cell compartment, IDH-mutant astrocytomas and oligodendrogliomas into the PM subtype committed in early oligodendrocyte lineage. Here, we report the identification of EM/PM subtype-specific gene co-expression networks and the characterization of hub gene polypyrimidine tract-binding protein 1 (PTBP1) as a genomic alteration-independent vulnerability in IDH-wildtype GBM. Supervised by the EM/PM classification scheme, we applied weighted gene co-expression network analysis to identify subtype-specific global gene co-expression modules. These gene co-expression modules were characterized for their clinical relevance, cellular origin and conserved expression pattern during brain development. Using lentiviral vector-mediated constitutive or inducible knockdown, we characterized the effects of PTBP1 on the survival of IDH-wildtype GBM cells, which was complemented with the analysis of PTBP1-depedent splicing pattern and overexpression of splicing target neuron-specific CDC42 (CDC42-N) isoform.  Transcriptomes of adult gliomas can be robustly assigned into 4 large gene co-expression modules that are prognostically relevant and are derived from either malignant cells of the EM/PM subtypes or tumor microenvironment. The EM subtype is associated with a malignant cell-intrinsic gene module involved in pre-mRNA splicing, DNA replication and damage response, and chromosome segregation, and a microenvironment-derived gene module predominantly involved in extracellular matrix organization and infiltrating immune cells. The PM subtype is associated with two malignant cell-intrinsic gene modules predominantly involved in transcriptional regulation and mRNA translation, respectively. Expression levels of these gene modules are independent prognostic factors and malignant cell-intrinsic gene modules are conserved during brain development. Focusing on the EM subtype, we identified PTBP1 as the most significant hub for the malignant cell-intrinsic gene module. PTBP1 is not altered in most glioma genomes. PTBP1 represses the conserved splicing of CDC42-N. PTBP1 knockdown or CDC42-N overexpression disrupts actin cytoskeleton dynamics, causing accumulation of reactive oxygen species and cell apoptosis. PTBP1-mediated repression of CDC42-N splicing represents a potential genomic alteration-independent, developmentally conserved vulnerability in IDH-wildtype GBM.


Assuntos
Glioblastoma , Ribonucleoproteínas Nucleares Heterogêneas , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Proteína cdc42 de Ligação ao GTP , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Humanos , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Redes Reguladoras de Genes , Regulação Neoplásica da Expressão Gênica , Splicing de RNA , Neurônios/metabolismo , Neurônios/patologia
6.
Anal Chem ; 96(31): 12630-12639, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39058331

RESUMO

Accurate diagnosis and effective treatment of tumors remain significant clinical challenges. While fluorescence imaging is essential for tumor detection, it has limitations in terms of specificity, penetration depth, and emission wavelength. Here, we report a novel glutathione (GSH)-responsive peptide self-assembly excimer probe (pSE) that optimizes two-photon tumor imaging and self-assisted counteraction of the cisplatin resistance in cancer cells. The GSH-responsive self-assembly of pSE induces a monomer-excimer transition of coumarin, promoting a near-infrared redshift of fluorescence emission under two-photon excitation. This process enhances penetration depth and minimizes interference from biological autofluorescence. Moreover, the intracellular self-assembly of pSE impacts GSH homeostasis, modulates relevant signaling pathways, and significantly reduces GSTP1 expression, resulting in decreased cisplatin efflux in cisplatin-resistant cancer cells. The proposed self-assembled excimer probe not only distinguishes cancer cells from normal cells but also enhances the efficacy of cisplatin chemotherapy, offering significant potential in tumor diagnosis and overcoming cisplatin-resistant tumors.


Assuntos
Antineoplásicos , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Glutationa , Peptídeos , Cisplatino/farmacologia , Cisplatino/química , Humanos , Peptídeos/química , Peptídeos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Glutationa/metabolismo , Glutationa/química , Fótons , Imagem Óptica , Corantes Fluorescentes/química , Cumarínicos/química , Cumarínicos/farmacologia , Linhagem Celular Tumoral
7.
Small ; 20(21): e2307390, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38100300

RESUMO

Tumor immunotherapy has become a research hotspot in cancer treatment, with macrophages playing a crucial role in tumor development. However, the tumor microenvironment restricts macrophage functionality, limiting their therapeutic potential. Therefore, modulating macrophage function and polarization is essential for enhancing tumor immunotherapy outcomes. Here, a supramolecular peptide amphiphile drug-delivery system (SPADS) is utilized to reprogram macrophages and reshape the tumor immune microenvironment (TIM) for immune-based therapies. The approach involved designing highly specific SPADS that selectively targets surface receptors of M2-type macrophages (M2-Mφ). These targeted peptides induced M2-Mφ repolarization into M1-type macrophages by dual inhibition of endoplasmic reticulum and oxidative stresses, resulting in improved macrophagic antitumor activity and immunoregulatory function. Additionally, TIM reshaping disrupted the immune evasion mechanisms employed by tumor cells, leading to increased infiltration, and activation of immune cells. Furthermore, the synergistic effect of macrophage reshaping and anti-PD-1 antibody (aPD-1) therapy significantly improved the immune system's ability to recognize and eliminate tumor cells, thereby enhancing tumor immunotherapy efficacy. SPADS utilization also induced lung metastasis suppression. Overall, this study demonstrates the potential of SPADS to drive macrophage reprogramming and reshape TIM, providing new insights, and directions for developing more effective immunotherapeutic approaches in cancer treatment.


Assuntos
Neoplasias da Mama , Imunoterapia , Nanosferas , Peptídeos , Microambiente Tumoral , Macrófagos Associados a Tumor , Microambiente Tumoral/efeitos dos fármacos , Imunoterapia/métodos , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Animais , Nanosferas/química , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Peptídeos/química , Peptídeos/farmacologia , Feminino , Camundongos , Linhagem Celular Tumoral , Humanos , Camundongos Endogâmicos BALB C
8.
Hepatology ; 77(6): 1911-1928, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36059151

RESUMO

BACKGROUND AND AIMS: Hepatoblastoma (HB) is the predominant type of childhood liver cancer. Treatment options for the clinically advanced HB remain limited. We aimed to dissect the cellular and molecular basis underlying HB oncogenesis and heterogeneity at the single-cell level, which could facilitate a better understanding of HB at both the biological and clinical levels. APPROACH AND RESULTS: Single-cell transcriptome profiling of tumor and paired distal liver tissue samples from five patients with HB was performed. Deconvolution analysis was used for integrating the single-cell transcriptomic profiles with the bulk transcriptomes of our HB cohort of post-neoadjuvant chemotherapy tumor samples. A single-cell transcriptomic landscape of early human liver parenchymal development was established for exploring the cellular root and hierarchy of HB oncogenesis. As a result, seven distinct tumor cell subpopulations were annotated, and an effective HB subtyping method was established based on their compositions. A HB tumor cell hierarchy was further revealed to not only fit with the classical cancer stem cell (CSC) model but also mirror the early human liver parenchymal development. Moreover, FACT inhibition, which could disrupt the oncogenic positive feedback loop between MYC and SSRP1 in HB, was identified as a promising epigenetic-targeted therapeutic strategy against the CSC-like HB1-Pro-like1 subpopulation and its related high-risk "Pro-like1" subtype of HB. CONCLUSIONS: Our findings illustrate the cellular architecture and developmental trajectories of HB via integrative bulk and single-cell transcriptome analyses, thus establishing a resourceful framework for the development of targeted diagnostics and therapeutics in the future.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Humanos , Hepatoblastoma/tratamento farmacológico , Transcriptoma , Neoplasias Hepáticas/patologia , Perfilação da Expressão Gênica , Proteínas de Ligação a DNA , Proteínas de Grupo de Alta Mobilidade/uso terapêutico , Fatores de Elongação da Transcrição
9.
Blood ; 140(12): 1390-1407, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-35544603

RESUMO

Recurrent MEF2D fusions with poor prognosis have been identified in B-cell precursor ALL (BCP-ALL). The molecular mechanisms underlying the pathogenic function of MEF2D fusions are poorly understood. Here, we show that MEF2D-HNRNPUL1 (MH) knock-in mice developed a progressive disease from impaired B-cell development at the pre-pro-B stage to pre-leukemia over 10 to 12 months. When cooperating with NRASG12D, MH drove an outbreak of BCP-ALL, with a more aggressive phenotype than the NRASG12D-induced leukemia. RNA-sequencing identified key networks involved in disease mechanisms. In chromatin immunoprecipitation-sequencing experiments, MH acquired increased chromatin-binding ability, mostly through MEF2D-responsive element (MRE) motifs in target genes, compared with wild-type MEF2D. Using X-ray crystallography, the MEF2D-MRE complex was characterized in atomic resolution, whereas disrupting the MH-DNA interaction alleviated the aberrant target gene expression and the B-cell differentiation arrest. The C-terminal moiety (HNRNPUL1 part) of MH was proven to contribute to the fusion protein's trans-regulatory activity, cofactor recruitment, and homodimerization. Furthermore, targeting MH-driven transactivation of the HDAC family by using the histone deacetylase inhibitor panobinostat in combination with chemotherapy improved the overall survival of MH/NRASG12D BCP-ALL mice. Altogether, these results not only highlight MH as an important driver in leukemogenesis but also provoke targeted intervention against BCP-ALL with MEF2D fusions.


Assuntos
Proteínas de Fusão Oncogênica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Cromatina , DNA/metabolismo , Inibidores de Histona Desacetilases , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Panobinostat , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , RNA
10.
Mol Ther ; 31(10): 2929-2947, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37515321

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is not sensitive to immune checkpoint blockade therapy, and negative feedback of tumor immune evasion might be partly responsible. We isolated CD8+ T cells and cultured them in vitro. Proteomics analysis was performed to compare changes in Panc02 cell lines cultured with conditioned medium, and leucine-rich repeat kinase 2 (LRRK2) was identified as a differential gene. LRRK2 expression was related to CD8+ T cell spatial distribution in PDAC clinical samples and upregulated by CD8+ T cells via interferon gamma (IFN-γ) simulation in vitro. Knockdown or pharmacological inhibition of LRRK2 activated an anti-pancreatic cancer immune response in mice, which meant that LRRK2 acted as an immunosuppressive gene. Mechanistically, LRRK2 phosphorylated PD-L1 at T210 to inhibit its ubiquitination-mediated proteasomal degradation. LRRK2 inhibition attenuated PD-1/PD-L1 blockade-mediated, T cell-induced upregulation of LRRK2/PD-L1, thus sensitizing the mice to anti-PD-L1 therapy. In addition, adenosylcobalamin, the activated form of vitamin B12, which was found to be a broad-spectrum inhibitor of LRRK2, could inhibit LRRK2 in vivo and sensitize PDAC to immunotherapy as well, which potentially endows LRRK2 inhibition with clinical translational value. Therefore, PD-L1 blockade combined with LRRK2 inhibition could be a novel therapy strategy for PDAC.

11.
Gut ; 72(5): 958-971, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35688610

RESUMO

OBJECTIVE: Innate immunity plays important roles in pancreatic ductal adenocarcinoma (PDAC), as non-T-cell-enriched tumour. Neutrophils are major players in innate immune system. Here, we aimed to explore the heterogeneity and pro-tumour mechanisms of neutrophils in PDAC. DESIGN: We analysed single-cell transcriptomes of peripheral blood polymorphonuclear leucocytes (PMNs) and tumour-infiltrating immune cells from five patients with PDAC, and performed immunofluorescence/immunohistochemistry staining, multi-omics analysis and in vitro experiments to validate the discoveries of bioinformatics analysis. RESULTS: Exploration of the heterogeneity of tumour-associated neutrophils (TANs) revealed a terminally differentiated pro-tumour subpopulation (TAN-1) associated with poor prognosis, an inflammatory subpopulation (TAN-2), a population of transitional stage that have just migrated to tumour microenvironment (TAN-3) and a subpopulation preferentially expressing interferon-stimulated genes (TAN-4). Glycolysis signature was upregulated along neutrophil transition trajectory, and TAN-1 was featured with hyperactivated glycolytic activity. The glycolytic switch of TANs was validated by integrative multi-omics approach of transcriptomics, proteomics and metabolomics analysis. Activation of glycolytic activity by LDHA overexpression induced immunosuppression and pro-tumour functions in neutrophil-like differentiated HL-60 (dHL-60) cells. Mechanistic studies revealed BHLHE40, downstream to hypoxia and endoplasmic reticulum stress, was a key regulator in polarisation of neutrophils towards TAN-1 phenotype, and direct transcriptional regulation of BHLHE40 on TAN-1 marker genes was demonstrated by chromatin immunoprecipitation assay. Pro-tumour and immunosuppression functions were observed in dHL-60 cells overexpressing BHLHE40. Importantly, immunohistochemistry analysis of PDAC tissues revealed the unfavourable prognostic value of BHLHE40+ neutrophils. CONCLUSION: The dynamic properties of TANs revealed by this study will be helpful in advancing PDAC therapy targeting innate immunity.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neutrófilos , Microambiente Tumoral , Análise da Expressão Gênica de Célula Única , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Proteínas de Homeodomínio/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias Pancreáticas
12.
Planta ; 258(2): 42, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37432475

RESUMO

MAIN CONCLUSION: A novel QTL GS6.1 increases yield per plant by controlling kernel size, plant architecture, and kernel filling in rice. Kernel size and plant architecture are critical agronomic traits that greatly influence kernel yield in rice. Using the single-segment substitution lines (SSSLs) with an indica cultivar Huajingxian74 as a recipient parent and American Jasmine as a donor parent, we identified a novel quantitative trait locus (QTL), named GS6.1. Near isogenic line-GS6.1 (NIL-GS6.1) produces long and narrow kernels by regulating cell length and width in the spikelet hulls, thus increasing the 1000-kernel weight. Compared with the control, the plant height, panicles per plant, panicle length, kernels per plant, secondary branches per panicle, and yield per plant of NIL-GS6.1 are increased. In addition, GS6.1 regulates the kernel filling rate. GS6.1 controls kernel size by modulating the transcription levels of part of EXPANSINs, kernel filling-related genes, and kernel size-related genes. These results indicate that GS6.1 might be beneficial for improving kernel yield and plant architecture in rice breeding by molecular design.


Assuntos
Oryza , Oryza/genética , Melhoramento Vegetal , Agricultura , Fenótipo , Locos de Características Quantitativas/genética
13.
Haematologica ; 108(8): 2029-2043, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36861414

RESUMO

RNA-binding proteins (RBP) have emerged as essential regulators that control gene expression and modulate multiple cancer traits. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy derived from transformation of T-cell progenitors that normally undergo discrete steps of differentiation in the thymus. The implications of essential RBP during T-cell neoplastic transformation remain largely unclear. Systematic evaluation of RBP identifies RNA helicase DHX15, which facilitates the disassembly of the spliceosome and release of lariat introns, as a T-ALL dependency factor. Functional analysis using multiple murine T-ALL models demonstrates the essential importance of DHX15 in tumor cell survival and leukemogenesis. Moreover, single-cell transcriptomics reveals that DHX15 depletion in T-cell progenitors hinders burst proliferation during the transition from doublenegative to double-positive cells (CD4-CD8- to CD4+CD8+). Mechanistically, abrogation of DHX15 perturbs RNA splicing and leads to diminished levels of SLC7A6 and SLC38A5 transcripts due to intron retention, thereby suppressing glutamine import and mTORC1 activity. We further propose a DHX15 signature modulator drug ciclopirox and demonstrate that it has prominent anti-T-ALL efficacy. Collectively, our data highlight the functional contribution of DHX15 to leukemogenesis through regulation of established oncogenic pathways. These findings also suggest a promising therapeutic approach, i.e., splicing perturbation by targeting spliceosome disassembly, may achieve considerable anti-tumor efficacy.


Assuntos
Leucemia , RNA Helicases , Humanos , Animais , Camundongos , RNA Helicases/genética , RNA Helicases/metabolismo , Splicing de RNA , Spliceossomos/genética , Leucemia/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo
14.
Theor Appl Genet ; 136(11): 225, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37847396

RESUMO

KEY MESSAGE: A novel QTL qGLF5 from Oryza rufipogon Griff. improves yield per plant and plant architecture in rice. Kernel size and plant architecture are critical agronomic traits that are key targets for improving crop yield. From the single-segment substitution lines of Oryza rufipogon Griff. in the indica cultivar Huajingxian74 (HJX74) background, we identified a novel quantitative trait locus (QTL), named qGLF5, which improves kernel shape, plant architecture, and yield per plant in rice. Compared with the control HJX74, the plant height, panicles per plant, panicle length, primary branches per panicle, secondary branches per panicle, and kernels per plant of the near-isogenic line-qGLF5 (NIL-qGLF5) are significantly increased. NIL-qGLF5 has long and narrow kernels by regulating cell number, cell length and width in the spikelet hulls. Yield per plant of NIL-qGLF5 is increased by 35.02% compared with that of HJX74. In addition, qGLF5 significantly improves yield per plant and plant architecture of NIL-gw5 and NIL-GW7. These results indicate that qGLF5 might be beneficial for improving plant architecture and kernel yield in rice breeding by molecular design.


Assuntos
Oryza , Mapeamento Cromossômico , Oryza/genética , Genes de Plantas , Melhoramento Vegetal , Locos de Características Quantitativas
15.
Am J Hematol ; 98(1): 66-78, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36219502

RESUMO

Mixed phenotype acute leukemia (MPAL) is a subtype of leukemia in which lymphoid and myeloid markers are co-expressed. Knowledge regarding the genetic features of MPAL is lacking due to its rarity and heterogeneity. Here, we applied an integrated genomic and transcriptomic approach to explore the molecular characteristics of 176 adult patients with MPAL, including 86 patients with T-lymphoid/myeloid MPAL (T/My MPAL-NOS), 42 with Ph+ MPAL, 36 with B-lymphoid/myeloid MPAL (B/My MPAL-NOS), 4 with t(v;11q23), and 8 with MPAL, NOS, rare types. Genetically, T/My MPAL-NOS was similar to B/T MPAL-NOS but differed from Ph+ MPAL and B/My MPAL-NOS. T/My MPAL-NOS exhibited higher CEBPA, DNMT3A, and NOTCH1 mutations. Ph+ MPAL demonstrated higher RUNX1 mutations. B/T MPAL-NOS showed higher NOTCH1 mutations. By integrating next-generation sequencing and RNA sequencing data of 89 MPAL patients, we defined eight molecular subgroups (G1-G8) with distinct mutational and gene expression characteristics. G1 was associated with CEBPA mutations, G2 and G3 with NOTCH1 mutations, G4 with BCL11B rearrangement and FLT3 mutations, G5 and G8 with BCR::ABL1 fusion, G6 with KMT2A rearrangement/KMT2A rearrangement-like features, and G7 with ZNF384 rearrangement/ZNF384 rearrangement-like characteristics. Subsequently, we analyzed single-cell RNA sequencing data from five patients. Groups G1, G2, G3, and G4 exhibited overexpression of hematopoietic stem cell disease-like and common myeloid progenitor disease-like signatures, G5 and G6 had high expression of granulocyte-monocyte progenitor disease-like and monocyte disease-like signatures, and G7 and G8 had common lymphoid progenitor disease-like signatures. Collectively, our findings indicate that integrative genomic and transcriptomic profiling may facilitate more precise diagnosis and develop better treatment options for MPAL.


Assuntos
Leucemia Mieloide Aguda , Transcriptoma , Humanos , Doença Aguda , Fenótipo , Genômica
16.
BMC Cardiovasc Disord ; 23(1): 315, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353727

RESUMO

OBJECTIVE: This study aimed to examine the effects of mindfulness-based stress reduction (MBSR) in patients with acute myocardial infarction (AMI) after primary percutaneous coronary intervention (PPCI). METHODS: A retrospective study was conducted with data collected from AMI patients who underwent successful PPCI. The study included 61 cases that received 8-week MBSR intervention (MBSR group) and 61 cases that received weekly health education (control group) over the same period. Outcome measures, including hemodynamic parameters, psychosocial characteristics [Hospital Anxiety and Depression Scale (HADS), Perceived Stress Scale (PSS), Perceived Social Support Scale (PSSS)], health-related quality of life [HRQoL, 7-item Seattle Angina Questionnaire (SAQ-7)], and major adverse cardiovascular events (MACE), were assessed at baseline (T1), post-intervention (T2), 1 month after the post-intervention (T3) and 3 months after the post-intervention (T4). RESULTS: Compared to the control group, the MBSR group showed improvements in blood pressure, specifically in systolic blood pressure (SBP) at T4, and diastolic blood pressure (DBP) at T3 and T4, and mean arterial blood pressure (MABP) at T3 and T4. Additionally, the MBSR group had lower scores of anxiety and perceived stress (HADS, PSS) and higher scores of perceived social support (PSSS) after the intervention. Furthermore, the MBSR group had higher scores on the SAQ-7 at all measurement points. The control group had a significantly higher total MACE rate compared to the MBSR group (26.23% vs. 9.84%). CONCLUSIONS: This study provides support for the potential benefits of MBSR as an adjunctive treatment for AMI patients undergoing PPCI.


Assuntos
Atenção Plena , Infarto do Miocárdio , Intervenção Coronária Percutânea , Humanos , Qualidade de Vida/psicologia , Estudos Retrospectivos , Estresse Psicológico/diagnóstico , Estresse Psicológico/terapia , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/terapia , Infarto do Miocárdio/psicologia , Intervenção Coronária Percutânea/efeitos adversos , Resultado do Tratamento
17.
Proc Natl Acad Sci U S A ; 117(33): 20117-20126, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747558

RESUMO

t(8;21)(q22;q22) acute myelogenous leukemia (AML) is morphologically characterized by a continuum of heterogeneous leukemia cells from myeloblasts to differentiated myeloid elements. Thus, t(8;21) AML is an excellent model for studying heterogeneous cell populations and cellular evolution during disease progression. Using integrative analyses of immunophenotype, RNA-sequencing (RNA-seq), and single-cell RNA-sequencing (scRNA-seq), we identified three distinct intrapatient leukemic cell populations that were arrested at different stages of myeloid differentiation: CD34+CD117dim blasts, CD34+CD117bri blasts, and abnormal myeloid cells with partial maturation (AM). CD117 is also known as c-KIT protein. CD34+CD117dim cells were blocked in the G0/G1 phase at disease onset, presenting with the regular morphology of myeloblasts showing features of granulocyte-monocyte progenitors (GMP), and were drug-resistant to chemotherapy. Genes associated with cell migration and adhesion (LGALS1, EMP3, and ANXA2) were highly expressed in the CD34+CD117dim population. CD34+CD117bri blasts were blocked a bit later than the CD34+CD117dim population in the hematopoietic differentiation stage and displayed high proliferation ability. AM cells, which bear abnormal myelocyte morphology, especially overexpressed granule genes AZU1, ELANE, and PRTN3 and were sensitive to chemotherapy. scRNA-seq at different time points identified CD34+CD117dim blasts as an important leukemic cluster that expanded at postrelapse refractory stage after several cycles of chemotherapy. Patients with t(8;21) AML with a higher proportion of CD34+CD117dim cells had significantly worse clinical outcomes than those with a lower CD34+CD117dim proportion. Univariate and multivariate analyses identified CD34+CD117dim proportion as an independent factor for poor disease outcome. Our study provides evidence for the multidimensional heterogeneity of t(8;21)AML and may offer new tools for future disease stratification.


Assuntos
Leucemia Mieloide Aguda/classificação , Leucemia Mieloide Aguda/patologia , Subpopulações de Linfócitos T/classificação , Subpopulações de Linfócitos T/metabolismo , Adulto , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/metabolismo , Transcriptoma
18.
Proc Natl Acad Sci U S A ; 117(17): 9490-9496, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32253318

RESUMO

Currently, there are no approved specific antiviral agents for novel coronavirus disease 2019 (COVID-19). In this study, 10 severe patients confirmed by real-time viral RNA test were enrolled prospectively. One dose of 200 mL of convalescent plasma (CP) derived from recently recovered donors with the neutralizing antibody titers above 1:640 was transfused to the patients as an addition to maximal supportive care and antiviral agents. The primary endpoint was the safety of CP transfusion. The second endpoints were the improvement of clinical symptoms and laboratory parameters within 3 d after CP transfusion. The median time from onset of illness to CP transfusion was 16.5 d. After CP transfusion, the level of neutralizing antibody increased rapidly up to 1:640 in five cases, while that of the other four cases maintained at a high level (1:640). The clinical symptoms were significantly improved along with increase of oxyhemoglobin saturation within 3 d. Several parameters tended to improve as compared to pretransfusion, including increased lymphocyte counts (0.65 × 109/L vs. 0.76 × 109/L) and decreased C-reactive protein (55.98 mg/L vs. 18.13 mg/L). Radiological examinations showed varying degrees of absorption of lung lesions within 7 d. The viral load was undetectable after transfusion in seven patients who had previous viremia. No severe adverse effects were observed. This study showed CP therapy was well tolerated and could potentially improve the clinical outcomes through neutralizing viremia in severe COVID-19 cases. The optimal dose and time point, as well as the clinical benefit of CP therapy, needs further investigation in larger well-controlled trials.


Assuntos
Betacoronavirus , Infecções por Coronavirus/terapia , Pneumonia Viral/terapia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/fisiopatologia , Feminino , Humanos , Imunização Passiva , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/fisiopatologia , RNA Viral , SARS-CoV-2 , Carga Viral , Soroterapia para COVID-19
19.
Yi Chuan ; 45(9): 835-844, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731237

RESUMO

Kernel size and plant architecture play important roles in kernel yield in rice. Cloning and functional study of genes related to kernel size and plant architecture are of great significance for breeding high-yield rice. Using the single-segment substitution lines which developed with Oryza barthii as a donor parent and an elite indica cultivar Huajingxian74 (HJX74) as a recipient parent, we identified a novel QTL (quantitative trait locus), named qGL3.4, which controls kernel size and plant architecture. Compared with HJX74, the kernel length, kernel width, 1000-kernel weight, panicle length, kernels per plant, primary branches, yield per plant, and plant height of near isogenic line-qGL3.4 (NIL-qGL3.4) are increased, whereas the panicles per plant and secondary branches per panicle of NIL-qGL3.4 are comparable to those of HJX74. qGL3.4 was narrowed to a 239.18 kb interval on chromosome 3. Cell analysis showed that NIL-qGL3.4 controlled kernel size by regulating cell growth. qGL3.4 controls kernel size at least in part through regulating the transcription levels of EXPANSINS, GS3, GL3.1, PGL1, GL7, OsSPL13 and GS5. These results indicate that qGL3.4 might be beneficial for improving kernel yield and plant architecture in rice breeding.


Assuntos
Oryza , Oryza/genética , Melhoramento Vegetal , Ciclo Celular , Proliferação de Células , Locos de Características Quantitativas
20.
Nature ; 536(7614): 41-47, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27398621

RESUMO

The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Alelos , Análise Mutacional de DNA , Europa (Continente)/etnologia , Exoma , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Humanos , Tamanho da Amostra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA