Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Yeast ; 32(4): 379-87, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25612242

RESUMO

Green fluorescent protein (GFP) has become an invaluable tool in biological research. Many GFP variants have been created that differ in brightness, photostability, and folding robustness. We have created two hybrid GFP variants, Envy and Ivy, which we placed in a vector for the C-terminal tagging of yeast proteins by PCR-mediated recombination. The Envy GFP variant combines mutations found in the robustly folding SuperfolderGFP and GFPγ, while the Ivy GFP variant is a hybrid of GFPγ and the yellow-green GFP variant, Clover. We compared Envy and Ivy to EGFP, SuperfolderGFP and GFPγ and found that Envy is brighter than the other GFP variants at both 30°C and 37°C, while Ivy is the most photostable. Envy and Ivy are recognized by a commonly used anti-GFP antibody, and both variants can be immunoprecipitated using the GFP TRAP Camelidae antibody nanotrap technology. Because Envy is brighter than the other GFP variants and is as photostable as GFPγ, we suggest that Envy should be the preferred GFP variant, while Ivy may be used in cases where photostability is of the utmost importance.


Assuntos
Proteínas de Fluorescência Verde/genética , Plasmídeos/genética , Saccharomyces cerevisiae/genética , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Medições Luminescentes , Plasmídeos/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo
2.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-39185013

RESUMO

The budding yeast Saccharomyces cerevisiae is a powerful model organism, partly because of the ease of genome alterations due to the combination of a fast generation time and many molecular genetic tools. Recent advances in CRISPR-based systems allow for the easier creation of alleles with internally inserted sequences within the coding regions of genes, such as the internal insertion of sequences that code for epitopes or fluorescent proteins. Here we briefly summarize some exisiting nomenclature standards and suggest nomenclature guidelines for internal insertion alleles which are informative, consistent, and computable.

3.
J Fungi (Basel) ; 10(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38392804

RESUMO

In the budding yeast Saccharomyces cerevisiae, sporulation occurs during starvation of a diploid cell and results in the formation of four haploid spores forming within the mother cell ascus. Meiosis divides the genetic material that is encapsulated by the prospore membrane that grows to surround the haploid nuclei; this membrane will eventually become the plasma membrane of the haploid spore. Cellularization of the spores occurs when the prospore membrane closes to capture the haploid nucleus along with some cytoplasmic material from the mother cell, and thus, closure of the prospore membrane is the meiotic cytokinetic event. This cytokinetic event involves the removal of the leading-edge protein complex, a complex of proteins that localizes to the leading edge of the growing prospore membrane. The development and closure of the prospore membrane must be coordinated with other meiotic exit events such as spindle disassembly. Timing of the closure of the prospore membrane depends on the meiotic exit pathway, which utilizes Cdc15, a Hippo-like kinase, and Sps1, an STE20 family GCKIII kinase, acting in parallel to the E3 ligase Ama1-APC/C. This review describes the sporulation process and focuses on the development of the prospore membrane and the regulation of prospore membrane closure.

4.
Eukaryot Cell ; 11(10): 1191-200, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22611022

RESUMO

The mechanisms that control the size and shape of membranes are not well understood, despite the importance of these structures in determining organelle and cell morphology. The prospore membrane, a double lipid bilayer that is synthesized de novo during sporulation in S. cerevisiae, grows to surround the four meiotic products. This membrane determines the shape of the newly formed spores and serves as the template for spore wall deposition. Ultimately, the inner leaflet of the prospore membrane will become the new plasma membrane of the cell upon germination. Here we show that Spo71, a pleckstrin homology domain protein whose expression is induced during sporulation, is critical for the appropriate growth of the prospore membrane. Without SPO71, prospore membranes surround the nuclei but are abnormally small, and spore wall deposition is disrupted. Sporulating spo71Δ cells have prospore membranes that properly localize components to their growing leading edges yet cannot properly localize septin structures. We also found that SPO71 genetically interacts with SPO1, a gene with homology to the phospholipase B gene that has been previously implicated in determining the shape of the prospore membrane. Together, these results show that SPO71 plays a critical role in prospore membrane development.


Assuntos
Proteínas de Transporte/fisiologia , Membrana Celular/ultraestrutura , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Membrana Celular/genética , Parede Celular/genética , Parede Celular/ultraestrutura , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Septinas/genética , Septinas/metabolismo , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento
5.
Mol Biol Cell ; 34(10): ar98, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37436806

RESUMO

During exit from meiosis II, cells undergo several structural rearrangements, including disassembly of the meiosis II spindles and cytokinesis. Each of these changes is regulated to ensure that they occur at the proper time. Previous studies have demonstrated that both SPS1, which encodes a STE20-family GCKIII kinase, and AMA1, which encodes a meiosis-specific activator of the Anaphase Promoting Complex, are required for both meiosis II spindle disassembly and cytokinesis in the budding yeast Saccharomyces cerevisiae. We examine the relationship between meiosis II spindle disassembly and cytokinesis and find that the meiosis II spindle disassembly failure in sps1Δ and ama1∆ cells is not the cause of the cytokinesis defect. We also see that the spindle disassembly defects in sps1Δ and ama1∆ cells are phenotypically distinct. We examined known microtubule-associated proteins Ase1, Cin8, and Bim1, and found that AMA1 is required for the proper loss of Ase1 and Cin8 on meiosis II spindles while SPS1 is required for Bim1 loss in meiosis II. Taken together, these data indicate that SPS1 and AMA1 promote distinct aspects of meiosis II spindle disassembly, and that both pathways are required for the successful completion of meiosis.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Meiose , Saccharomyces cerevisiae/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Fuso Acromático/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
6.
J Fungi (Basel) ; 7(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466572

RESUMO

During sporulation in the budding yeast Saccharomyces cerevisiae, proper development of the prospore membrane is necessary for the formation of viable spores. The prospore membrane will eventually become the plasma membrane of the newly formed haploid spore and also serves as the template for the deposition of the spore wall. The prospore membrane is generated de novo during meiosis II and the growing edge of the prospore membrane is associated with the Leading Edge Protein (LEP) complex. We find that the Smk1 MAP kinase, along with its activator Ssp2, transiently localizes with the LEP during late meiosis II. SSP2 is required for the leading edge localization of Smk1; this localization is independent of the activation state of Smk1. Like other LEP components, the localization of Smk1 at the leading edge also depends on Ady3. Although prospore membrane development begins normally in smk1 and ssp2 mutants, late prospore membrane formation is disrupted, with the formation of ectopic membrane compartments. Thus, MAP kinase signaling plays an important role in the formation of the prospore membrane.

7.
Genetics ; 216(2): 447-462, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32788308

RESUMO

Meiosis in the budding yeast Saccharomyces cerevisiae is used to create haploid yeast spores from a diploid mother cell. During meiosis II, cytokinesis occurs by closure of the prospore membrane, a membrane that initiates at the spindle pole body and grows to surround each of the haploid meiotic products. Timely prospore membrane closure requires SPS1, which encodes an STE20 family GCKIII kinase. To identify genes that may activate SPS1, we utilized a histone phosphorylation defect of sps1 mutants to screen for genes with a similar phenotype and found that cdc15 shared this phenotype. CDC15 encodes a Hippo-like kinase that is part of the mitotic exit network. We find that Sps1 complexes with Cdc15, that Sps1 phosphorylation requires Cdc15, and that CDC15 is also required for timely prospore membrane closure. We also find that SPS1, like CDC15, is required for meiosis II spindle disassembly and sustained anaphase II release of Cdc14 in meiosis. However, the NDR-kinase complex encoded by DBF2/DBF20MOB1 which functions downstream of CDC15 in mitotic cells, does not appear to play a role in spindle disassembly, timely prospore membrane closure, or sustained anaphase II Cdc14 release. Taken together, our results suggest that the mitotic exit network is rewired for exit from meiosis II, such that SPS1 replaces the NDR-kinase complex downstream of CDC15.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Citocinese , Proteínas de Ligação ao GTP/metabolismo , Meiose , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ligação ao GTP/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
8.
Genetics ; 174(1): 215-27, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16816426

RESUMO

The regulation of cellular membrane dynamics is crucial for maintaining proper cell growth and division. The Cdc48-Npl4-Ufd1 complex is required for several regulated membrane-associated processes as part of the ubiquitin-proteasome system, including ER-associated degradation and the control of lipid composition in yeast. In this study we report the results of a genetic screen in Saccharomyces cerevisiae for extragenic suppressors of a temperature-sensitive npl4 allele and the subsequent analysis of one suppressor, GET3/ARR4. The GET3 gene encodes an ATPase with homology to the regulatory component of the bacterial arsenic pump. Mutants of GET3 rescue several phenotypes of the npl4 mutant and transcription of GET3 is coregulated with the proteasome, illustrating a functional relationship between GET3 and NPL4 in the ubiquitin-proteasome system. We have further found that Get3 biochemically interacts with the trans-membrane domain proteins Get1/Mdm39 and Get2/Rmd7 and that Deltaget3 is able to suppress phenotypes of get1 and get2 mutants, including sporulation defects. In combination, our characterization of GET3 genetic and biochemical interactions with NPL4, GET1, and GET2 implicates Get3 in multiple membrane-dependent pathways.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Complexos Multiproteicos/metabolismo , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Esporos Fúngicos/genética , Supressão Genética/fisiologia , Distribuição Tecidual , Proteína com Valosina , Proteínas de Transporte Vesicular
9.
J Vis Exp ; (115)2016 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-27684273

RESUMO

During times of nutritional stress, Saccharomyces cerevisiae undergoes gametogenesis, known as sporulation. Diploid yeast cells that are starved for nitrogen and carbon will initiate the sporulation process. The process of sporulation includes meiosis followed by spore formation, where the haploid nuclei are packaged into environmentally resistant spores. We have developed methods for the efficient sporulation of budding yeast in 96 multiwell plates, to increase the throughput of screening yeast cells for sporulation phenotypes. These methods are compatible with screening with yeast containing plasmids requiring nutritional selection, when appropriate minimal media is used, or with screening yeast with genomic alterations, when a rich presporulation regimen is used. We find that for this method, aeration during sporulation is critical for spore formation, and have devised techniques to ensure sufficient aeration that are compatible with the 96 multiwell plate format. Although these methods do not achieve the typical ~80% level of sporulation that can be achieved in large-volume flask based experiments, these methods will reliably achieve about 50-60% level of sporulation in small-volume multiwell plates.


Assuntos
Técnicas Microbiológicas/instrumentação , Saccharomyces cerevisiae/fisiologia , Técnicas Microbiológicas/métodos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/fisiologia
10.
Genetics ; 203(3): 1203-16, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27182947

RESUMO

During sporulation in Saccharomyces cerevisiae, a double lipid bilayer called the prospore membrane is formed de novo, growing around each meiotic nucleus and ultimately closing to create four new cells within the mother cell. Here we show that SPS1, which encodes a kinase belonging to the germinal center kinase III family, is involved in prospore membrane development and is required for prospore membrane closure. We find that SPS1 genetically interacts with SPO77 and see that loss of either gene disrupts prospore membrane closure in a similar fashion. Specifically, cells lacking SPS1 and SPO77 produce hyperelongated prospore membranes from which the leading edge protein complex is not removed from the prospore membrane in a timely fashion. The SPS1/SPO77 pathway is required for the proper phosphorylation and stability of Ssp1, a member of the leading edge protein complex that is removed and degraded when the prospore membrane closes. Genetic dissection of prospore membrane closure finds SPS1 and SPO77 act in parallel to a previously described pathway of prospore membrane closure that involves AMA1, an activator of the meiotic anaphase promoting complex.


Assuntos
Proteínas Cdc20/genética , Proteínas de Ciclo Celular/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Esporos Fúngicos/genética , Ciclossomo-Complexo Promotor de Anáfase/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Meiose/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Transporte Proteico/genética , Proteólise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporos Fúngicos/metabolismo
11.
PLoS One ; 10(11): e0143571, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26605945

RESUMO

In the yeast Saccharomyces cerevisiae, cells undergoing sporulation form prospore membranes to surround their meiotic nuclei. The prospore membranes ultimately become the plasma membranes of the new cells. The putative phospholipase Spo1 and the tandem Pleckstrin Homology domain protein Spo71 have previously been shown to be required for prospore membrane development, along with the constitutively expressed Vps13 involved in vacuolar sorting. Here, we utilize genetic analysis, and find that SPO73 is required for proper prospore membrane shape and, like SPO71, is necessary for prospore membrane elongation. Additionally, similar to SPO71, loss of SPO73 partially suppresses spo1Δ. Spo73 localizes to prospore membranes and complexes with Spo71. We also find that phosphatidylserine localizes to the prospore membrane. Our results suggest a model where SPO71 and SPO73 act in opposition to SPO1 to form and elongate prospore membranes, while VPS13 plays a distinct role in prospore membrane development.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/genética , Técnicas de Silenciamento de Genes , Lisofosfolipase/genética , Lisofosfolipase/metabolismo , Complexos Multiproteicos/metabolismo , Mutação , Fenótipo , Fosfatidilserinas/metabolismo , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Esporos Fúngicos
12.
PLoS One ; 9(11): e113528, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25409301

RESUMO

Sporulation in the budding yeast Saccharomyces cerevisiae is a developmental program initiated in response to nutritional deprivation. Sps1, a serine/threonine kinase, is required for sporulation, but relatively little is known about the molecular mechanisms through which it regulates this process. Here we show that SPS1 encodes a bona-fide member of the GCKIII subfamily of STE20 kinases, both through phylogenetic analysis of the kinase domain and examination of its C-terminal regulatory domain. Within the regulatory domain, we find Sps1 contains an invariant ExxxPG region conserved from plant to human GCKIIIs that we call the EPG motif; we show this EPG motif is important for SPS1 function. We also find that Sps1 is phosphorylated near its N-terminus on Threonine 12, and that this phosphorylation is required for the efficient production of spores. In Sps1, Threonine 12 lies within a 14-3-3 consensus binding sequence, and we show that the S. cerevisiae 14-3-3 proteins Bmh1 and Bmh2 bind Sps1 in a Threonine 12-dependent fashion. This interaction is significant, as BMH1 and BMH2 are required during sporulation and genetically interact with SPS1 in sporulating cells. Finally, we observe that Sps1, Bmh1 and Bmh2 are present in both the nucleus and cytoplasm during sporulation. We identify a nuclear localization sequence in Sps1 at amino acids 411-415, and show that this sequence is necessary and sufficient for nuclear localization. Taken together, these data identify regions within Sps1 critical for its function and indicate that SPS1 and 14-3-3s act together to promote proper sporulation in S. cerevisiae.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas 14-3-3/química , Motivos de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/classificação , Núcleo Celular/metabolismo , Genótipo , Quinases do Centro Germinativo , Humanos , Microscopia de Fluorescência , Dados de Sequência Molecular , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/classificação , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/classificação , Alinhamento de Sequência , Esporos Fúngicos/metabolismo
13.
Genetics ; 187(3): 803-15, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21196525

RESUMO

The restricted expression of epidermal growth factor (EGF) family ligands is important for proper development and for preventing cancerous growth in mammals. In Caenorhabditis elegans, the class A and B synthetic multivulva (synMuv) genes redundantly repress expression of lin-3 EGF to negatively regulate Ras-mediated vulval development. The class B synMuv genes encode proteins homologous to components of the NuRD and Myb-MuvB/dREAM transcriptional repressor complexes, indicating that they likely silence lin-3 EGF through chromatin remodeling. The two class A synMuv genes cloned thus far, lin-8 and lin-15A, both encode novel proteins. The LIN-8 protein is nuclear. We have characterized the class A synMuv gene lin-56 and found it to encode a novel protein that shares a THAP-like C(2)CH motif with LIN-15A. Both the LIN-56 and LIN-15A proteins localize to nuclei. Wild-type levels of LIN-56 require LIN-15A, and wild-type levels and/or localization of LIN-15A requires LIN-56. Furthermore, LIN-56 and LIN-15A interact in the yeast two-hybrid system. We propose that LIN-56 and LIN-15A associate in a nuclear complex that inhibits vulval specification by repressing lin-3 EGF expression.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/genética , Fator de Crescimento Epidérmico/genética , Fatores de Transcrição/metabolismo , Vulva/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Feminino , Regulação da Expressão Gênica , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Dados de Sequência Molecular , Interferência de RNA , Transdução de Sinais , Fatores de Transcrição/genética , Vulva/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
14.
Proc Natl Acad Sci U S A ; 102(35): 12431-6, 2005 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16116083

RESUMO

Spore formation in Saccharomyces cerevisiae involves the sequential deposition of multiple spore wall layers between the prospore membranes that surround each meiotic product. The Smk1p mitogen-activated protein (MAP) kinase plays a critical role in spore formation, but the proteins that interact with Smk1p to regulate spore morphogenesis have not been described. Using mass spectrometry, we identify Gsc2p as a Smk1p-associated protein. Gsc2p is a 1,3-beta-glucan synthase subunit involved in synthesizing an inner spore wall layer. We find that 1,3-beta-glucan synthase activity is elevated in smk1 mutants, suggesting that SMK1 negatively regulates GSC2. Although deposition of the two inner spore wall layers is normal in smk1 mutants, deposition of the outer layers is aberrant. However, eliminating GSC2 activity restores normal deposition of the third spore wall layer in smk1 mutants, indicating that negative regulation of GSC2 by SMK1 is important for spore wall deposition. Our findings suggest a model for the coordination of spore wall layer deposition in which Smk1p facilitates the transition between early and late phases of spore wall deposition by inhibiting a spore wall-synthesizing enzyme important for early phases of spore wall deposition.


Assuntos
Glucosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Parede Celular/metabolismo , Regulação para Baixo , Genes Fúngicos , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/genética , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Modelos Biológicos , Mutação , Fenótipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Esporos Fúngicos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA