Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.993
Filtrar
1.
Mol Cell ; 83(11): 1887-1902.e8, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244254

RESUMO

Interleukin-1ß (IL-1ß) is a key protein in inflammation and contributes to tumor progression. However, the role of IL-1ß in cancer is ambiguous or even contradictory. Here, we found that upon IL-1ß stimulation, nicotinamide nucleotide transhydrogenase (NNT) in cancer cells is acetylated at lysine (K) 1042 (NNT K1042ac) and thereby induces the mitochondrial translocation of p300/CBP-associated factor (PCAF). This acetylation enhances NNT activity by increasing the binding affinity of NNT for NADP+ and therefore boosts NADPH production, which subsequently sustains sufficient iron-sulfur cluster maintenance and protects tumor cells from ferroptosis. Abrogating NNT K1042ac dramatically attenuates IL-1ß-promoted tumor immune evasion and synergizes with PD-1 blockade. In addition, NNT K1042ac is associated with IL-1ß expression and the prognosis of human gastric cancer. Our findings demonstrate a mechanism of IL-1ß-promoted tumor immune evasion, implicating the therapeutic potential of disrupting the link between IL-1ß and tumor cells by inhibiting NNT acetylation.


Assuntos
NADP Trans-Hidrogenases , Neoplasias , Humanos , NADP Trans-Hidrogenases/genética , NADP Trans-Hidrogenases/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Acetilação , Processamento de Proteína Pós-Traducional , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/genética
2.
Mol Cell ; 81(21): 4467-4480.e7, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34687604

RESUMO

Viral RNA-dependent RNA polymerases (RdRps) are a target for broad-spectrum antiviral therapeutic agents. Recently, we demonstrated that incorporation of the T-1106 triphosphate, a pyrazine-carboxamide ribonucleotide, into nascent RNA increases pausing and backtracking by the poliovirus RdRp. Here, by monitoring enterovirus A-71 RdRp dynamics during RNA synthesis using magnetic tweezers, we identify the "backtracked" state as an intermediate used by the RdRp for copy-back RNA synthesis and homologous recombination. Cell-based assays and RNA sequencing (RNA-seq) experiments further demonstrate that the pyrazine-carboxamide ribonucleotide stimulates these processes during infection. These results suggest that pyrazine-carboxamide ribonucleotides do not induce lethal mutagenesis or chain termination but function by promoting template switching and formation of defective viral genomes. We conclude that RdRp-catalyzed intra- and intermolecular template switching can be induced by pyrazine-carboxamide ribonucleotides, defining an additional mechanistic class of antiviral ribonucleotides with potential for broad-spectrum activity.


Assuntos
Pirazinas/química , Vírus de RNA/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Recombinação Genética , Ribonucleotídeos/química , Animais , Antivirais , Catálise , Células Cultivadas , Técnicas Genéticas , Genoma , Genoma Viral , Recombinação Homóloga , Humanos , Cinética , Camundongos , Camundongos Transgênicos , Simulação de Dinâmica Molecular , Mutagênese , Nucleotídeos/genética , Conformação Proteica , RNA/química , RNA Polimerase Dependente de RNA/metabolismo , RNA-Seq , Transgenes , Virulência
3.
EMBO J ; 43(13): 2606-2635, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806659

RESUMO

Microtubule-based kinesin motor proteins are crucial for intracellular transport, but their hyperactivation can be detrimental for cellular functions. This study investigated the impact of a constitutively active ciliary kinesin mutant, OSM-3CA, on sensory cilia in C. elegans. Surprisingly, we found that OSM-3CA was absent from cilia but underwent disposal through membrane abscission at the tips of aberrant neurites. Neighboring glial cells engulf and eliminate the released OSM-3CA, a process that depends on the engulfment receptor CED-1. Through genetic suppressor screens, we identified intragenic mutations in the OSM-3CA motor domain and mutations inhibiting the ciliary kinase DYF-5, both of which restored normal cilia in OSM-3CA-expressing animals. We showed that conformational changes in OSM-3CA prevent its entry into cilia, and OSM-3CA disposal requires its hyperactivity. Finally, we provide evidence that neurons also dispose of hyperactive kinesin-1 resulting from a clinic variant associated with amyotrophic lateral sclerosis, suggesting a widespread mechanism for regulating hyperactive kinesins.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cílios , Cinesinas , Neuroglia , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Cinesinas/metabolismo , Cinesinas/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Neuroglia/metabolismo , Cílios/metabolismo , Neurônios/metabolismo , Mutação , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia
4.
EMBO J ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349845

RESUMO

The Krebs cycle byproduct itaconate has recently emerged as an important metabolite regulating macrophage immune functions, but its role in tumor cells remains unknown. Here, we show that increased tumor-intrinsic cis-aconitate decarboxylase (ACOD1 or CAD, encoded by immune-responsive gene 1, Irg1) expression and itaconate production promote tumor immunogenicity and anti-tumor immune responses. Furthermore, we identify thimerosal, a vaccine preservative, as a specific inducer of IRG1 expression in tumor cells but not in macrophages, thereby enhancing tumor immunogenicity. Mechanistically, thimerosal induces itaconate production through a ROS-RIPK3-IRF1 signaling axis in tumor cells. Further, increased IRG1/itaconate upregulates antigen presentation-related gene expression via promoting TFEB nuclear translocation. Intratumoral injection of thimerosal induced itaconate production, activated the tumor immune microenvironment, and inhibited tumor growth in a T cell-dependent manner. Importantly, IRG1 deficiency markedly impaired tumor response to thimerosal treatment. Furthermore, itaconate induction by thimerosal potentiates the anti-tumor efficacy of adoptive T-cell therapy and anti-PD1 therapy in a mouse lymphoma model. Hence, our findings identify a new role for tumor intrinsic IRG1/itaconate in promoting tumor immunogenicity and provide a translational means to increase immunotherapy efficacy.

5.
Cell ; 153(3): 550-61, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23622240

RESUMO

Sharply delineated domains of cell types arise in developing tissues under instruction of inductive signal (morphogen) gradients, which specify distinct cell fates at different signal levels. The translation of a morphogen gradient into discrete spatial domains relies on precise signal responses at stable cell positions. However, cells in developing tissues undergoing morphogenesis and proliferation often experience complex movements, which may affect their morphogen exposure, specification, and positioning. How is a clear pattern achieved with cells moving around? Using in toto imaging of the zebrafish neural tube, we analyzed specification patterns and movement trajectories of neural progenitors. We found that specified progenitors of different fates are spatially mixed following heterogeneous Sonic Hedgehog signaling responses. Cell sorting then rearranges them into sharply bordered domains. Ectopically induced motor neuron progenitors also robustly sort to correct locations. Our results reveal that cell sorting acts to correct imprecision of spatial patterning by noisy inductive signals.


Assuntos
Morfogênese , Células-Tronco Neurais/metabolismo , Tubo Neural/citologia , Transdução de Sinais , Peixe-Zebra/embriologia , Animais , Movimento Celular , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Proteínas Hedgehog/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
6.
Nature ; 610(7933): 783-790, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224385

RESUMO

Around birth, globin expression in human red blood cells (RBCs) shifts from γ-globin to ß-globin, which results in fetal haemoglobin (HbF, α2γ2) being gradually replaced by adult haemoglobin (HbA, α2ß2)1. This process has motivated the development of innovative approaches to treat sickle cell disease and ß-thalassaemia by increasing HbF levels in postnatal RBCs2. Here we provide therapeutically relevant insights into globin gene switching obtained through a CRISPR-Cas9 screen for ubiquitin-proteasome components that regulate HbF expression. In RBC precursors, depletion of the von Hippel-Lindau (VHL) E3 ubiquitin ligase stabilized its ubiquitination target, hypoxia-inducible factor 1α (HIF1α)3,4, to induce γ-globin gene transcription. Mechanistically, HIF1α-HIF1ß heterodimers bound cognate DNA elements in BGLT3, a long noncoding RNA gene located 2.7 kb downstream of the tandem γ-globin genes HBG1 and HBG2. This was followed by the recruitment of transcriptional activators, chromatin opening and increased long-range interactions between the γ-globin genes and their upstream enhancer. Similar induction of HbF occurred with hypoxia or with inhibition of prolyl hydroxylase domain enzymes that target HIF1α for ubiquitination by the VHL E3 ubiquitin ligase. Our findings link globin gene regulation with canonical hypoxia adaptation, provide a mechanism for HbF induction during stress erythropoiesis and suggest a new therapeutic approach for ß-haemoglobinopathies.


Assuntos
gama-Globinas , Humanos , Cromatina , Hemoglobina Fetal/biossíntese , Hemoglobina Fetal/genética , gama-Globinas/biossíntese , gama-Globinas/genética , Hipóxia/genética , Prolil Hidroxilases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Longo não Codificante , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Eritropoese
7.
PLoS Biol ; 22(4): e3002590, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683849

RESUMO

Brain pericytes are one of the critical cell types that regulate endothelial barrier function and activity, thus ensuring adequate blood flow to the brain. The genetic pathways guiding undifferentiated cells into mature pericytes are not well understood. We show here that pericyte precursor populations from both neural crest and head mesoderm of zebrafish express the transcription factor nkx3.1 develop into brain pericytes. We identify the gene signature of these precursors and show that an nkx3.1-, foxf2a-, and cxcl12b-expressing pericyte precursor population is present around the basilar artery prior to artery formation and pericyte recruitment. The precursors later spread throughout the brain and differentiate to express canonical pericyte markers. Cxcl12b-Cxcr4 signaling is required for pericyte attachment and differentiation. Further, both nkx3.1 and cxcl12b are necessary and sufficient in regulating pericyte number as loss inhibits and gain increases pericyte number. Through genetic experiments, we have defined a precursor population for brain pericytes and identified genes critical for their differentiation.


Assuntos
Encéfalo , Pericitos , Fatores de Transcrição , Proteínas de Peixe-Zebra , Animais , Encéfalo/metabolismo , Encéfalo/embriologia , Diferenciação Celular , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Mesoderma/metabolismo , Mesoderma/citologia , Crista Neural/metabolismo , Crista Neural/citologia , Pericitos/metabolismo , Pericitos/citologia , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
8.
Proc Natl Acad Sci U S A ; 121(7): e2319682121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38319972

RESUMO

Cancer invasion and metastasis are known to be potentiated by the expression of aquaporins (AQPs). Likewise, the expression levels of AQPs have been shown to be prognostic for survival in patients and have a role in tumor growth, edema, angiogenesis, and tumor cell migration. Thus, AQPs are key players in cancer biology and potential targets for drug development. Here, we present the single-particle cryo-EM structure of human AQP7 at 3.2-Å resolution in complex with the specific inhibitor compound Z433927330. The structure in combination with MD simulations shows that the inhibitor binds to the endofacial side of AQP7. In addition, cancer cells treated with Z433927330 show reduced proliferation. The data presented here serve as a framework for the development of AQP inhibitors.


Assuntos
Aquaporinas , Neoplasias , Humanos , Aquaporinas/metabolismo , Aquaporina 1/metabolismo
9.
Blood ; 143(19): 1980-1991, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38364109

RESUMO

ABSTRACT: The switch from fetal hemoglobin (γ-globin, HBG) to adult hemoglobin (ß-globin, HBB) gene transcription in erythroid cells serves as a paradigm for a complex and clinically relevant developmental gene regulatory program. We previously identified HIC2 as a regulator of the switch by inhibiting the transcription of BCL11A, a key repressor of HBG production. HIC2 is highly expressed in fetal cells, but the mechanism of its regulation is unclear. Here we report that HIC2 developmental expression is controlled by microRNAs (miRNAs), as loss of global miRNA biogenesis through DICER1 depletion leads to upregulation of HIC2 and HBG messenger RNA. We identified the adult-expressed let-7 miRNA family as a direct posttranscriptional regulator of HIC2. Ectopic expression of let-7 in fetal cells lowered HIC2 levels, whereas inhibition of let-7 in adult erythroblasts increased HIC2 production, culminating in decommissioning of a BCL11A erythroid enhancer and reduced BCL11A transcription. HIC2 depletion in let-7-inhibited cells restored BCL11A-mediated repression of HBG. Together, these data establish that fetal hemoglobin silencing in adult erythroid cells is under the control of a miRNA-mediated inhibitory pathway (let-7 ⊣ HIC2 ⊣ BCL11A ⊣ HBG).


Assuntos
Hemoglobina Fetal , Fatores de Transcrição Kruppel-Like , MicroRNAs , Proteínas Repressoras , Humanos , Globinas beta/genética , Globinas beta/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Eritroblastos/metabolismo , Eritroblastos/citologia , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Transcrição Gênica
10.
Nature ; 579(7798): 284-290, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32103175

RESUMO

Cancer recurrence after surgery remains an unresolved clinical problem1-3. Myeloid cells derived from bone marrow contribute to the formation of the premetastatic microenvironment, which is required for disseminating tumour cells to engraft distant sites4-6. There are currently no effective interventions that prevent the formation of the premetastatic microenvironment6,7. Here we show that, after surgical removal of primary lung, breast and oesophageal cancers, low-dose adjuvant epigenetic therapy disrupts the premetastatic microenvironment and inhibits both the formation and growth of lung metastases through its selective effect on myeloid-derived suppressor cells (MDSCs). In mouse models of pulmonary metastases, MDSCs are key factors in the formation of the premetastatic microenvironment after resection of primary tumours. Adjuvant epigenetic therapy that uses low-dose DNA methyltransferase and histone deacetylase inhibitors, 5-azacytidine and entinostat, disrupts the premetastatic niche by inhibiting the trafficking of MDSCs through the downregulation of CCR2 and CXCR2, and by promoting MDSC differentiation into a more-interstitial macrophage-like phenotype. A decreased accumulation of MDSCs in the premetastatic lung produces longer periods of disease-free survival and increased overall survival, compared with chemotherapy. Our data demonstrate that, even after removal of the primary tumour, MDSCs contribute to the development of premetastatic niches and settlement of residual tumour cells. A combination of low-dose adjuvant epigenetic modifiers that disrupts this premetastatic microenvironment and inhibits metastases may permit an adjuvant approach to cancer therapy.


Assuntos
Epigênese Genética , Terapia Genética , Células Supressoras Mieloides/fisiologia , Neoplasias/terapia , Microambiente Tumoral , Animais , Azacitidina/farmacologia , Benzamidas/farmacologia , Diferenciação Celular , Movimento Celular/efeitos dos fármacos , Quimioterapia Adjuvante , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Camundongos , Células Supressoras Mieloides/citologia , Metástase Neoplásica/terapia , Neoplasias/cirurgia , Piridinas/farmacologia , Receptores CCR2/genética , Receptores de Interleucina-8B/genética , Microambiente Tumoral/efeitos dos fármacos
11.
Nucleic Acids Res ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39380491

RESUMO

The shared genetic basis offers very valuable insights into the etiology, diagnosis and therapy of complex traits. However, a comprehensive resource providing shared genetic basis using the accessible summary statistics is currently lacking. It is challenging to analyze the shared genetic basis due to the difficulty in selecting parameters and the complexity of pipeline implementation. To address these issues, we introduce GWAShug, a platform featuring a standardized best-practice pipeline with four trait level methods and three molecular level methods. Based on stringent quality control, the GWAShug resource module includes 539 high-quality GWAS summary statistics for European and East Asian populations, covering 54 945 pairs between a measurement-based and a disease-based trait and 43 902 pairs between two disease-based traits. Users can easily search for shared genetic basis information by trait name, MeSH term and category, and access detailed gene information across different trait pairs. The platform facilitates interactive visualization and analysis of shared genetic basic results, allowing users to explore data dynamically. Results can be conveniently downloaded via FTP links. Additionally, we offer an online analysis module that allows users to analyze their own summary statistics, providing comprehensive tables, figures and interactive visualization and analysis. GWAShug is freely accessible at http://www.gwashug.com.

12.
Proc Natl Acad Sci U S A ; 120(34): e2215777120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37585464

RESUMO

TRPML3 is a Ca2+/Na+ release channel residing in both phagophores and endolysosomal membranes. It is activated by PI3P and PI3,5P2. Its activity can be enhanced by high luminal pH and by replacing luminal Na+ with K+. Here, we report that big-conductance Ca2+-activated potassium (BK) channels form a positive feedback loop with TRPML3. Ca2+ release via TRPML3 activates BK, which in turn facilitates TRPML3-mediated Ca2+ release, potentially through removing luminal Na+ inhibition. We further show that TRPML3/BK and mammalian target of rapamycin (mTOR) form another positive feedback loop to facilitate autophagy induction in response to nutrient starvation, i.e., mTOR inhibition upon nutrient starvation activates TRPML3/BK, and this further reduces mTOR activity, thereby increasing autophagy induction. Mechanistically, the feedback regulation between TRPML3/BK and mTOR is mediated by PI3P, an endogenous TRPML3 activator that is enriched in phagophores and is up-regulated by mTOR reduction. Importantly, bacterial infection activates TRPML3 in a BK-dependent manner, and both TRPML3 and BK are required for mTOR suppression and autophagy induction responding to bacterial infection. Suppressing either TRPML3 or BK helps bacteria survival whereas increasing either TRPML3 or BK favors bacterial clearance. Considering that TRPML3/BK is inhibited by low luminal pH but activated by high luminal pH and PI3P in phagophores, we suggest that TRPML3/BK and mTOR form a positive feedback loop via PI3P to ensure efficient autophagy induction in response to nutrient deprivation and bacterial infection. Our study reveals a role of TRPML3-BK coupling in controlling cellular homeostasis and intracellular bacterial clearance via regulating mTOR signaling.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta , Sirolimo , Retroalimentação , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Autofagia , Bactérias , Serina-Treonina Quinases TOR
13.
Nat Methods ; 19(11): 1490-1499, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36280719

RESUMO

A central challenge in biology is obtaining high-content, high-resolution information while analyzing tissue samples at volumes relevant to disease progression. We address this here with CODA, a method to reconstruct exceptionally large (up to multicentimeter cubed) tissues at subcellular resolution using serially sectioned hematoxylin and eosin-stained tissue sections. Here we demonstrate CODA's ability to reconstruct three-dimensional (3D) distinct microanatomical structures in pancreas, skin, lung and liver tissues. CODA allows creation of readily quantifiable tissue volumes amenable to biological research. As a testbed, we assess the microanatomy of the human pancreas during tumorigenesis within the branching pancreatic ductal system, labeling ten distinct structures to examine heterogeneity and structural transformation during neoplastic progression. We show that pancreatic precancerous lesions develop into distinct 3D morphological phenotypes and that pancreatic cancer tends to spread far from the bulk tumor along collagen fibers that are highly aligned to the 3D curves of ductal, lobular, vascular and neural structures. Thus, CODA establishes a means to transform broadly the structural study of human diseases through exploration of exhaustively labeled 3D microarchitecture.


Assuntos
Imageamento Tridimensional , Neoplasias Pancreáticas , Humanos , Imageamento Tridimensional/métodos , Neoplasias Pancreáticas/patologia , Pâncreas/patologia
14.
Blood ; 141(22): 2756-2770, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36893455

RESUMO

The switch from fetal hemoglobin (HbF) to adult hemoglobin (HbA) is a paradigm for developmental gene expression control with relevance to sickle cell disease and ß-thalassemia. Polycomb repressive complex (PRC) proteins regulate this switch, and an inhibitor of PRC2 has entered a clinical trial for HbF activation. Yet, how PRC complexes function in this process, their target genes, and relevant subunit composition are unknown. Here, we identified the PRC1 subunit BMI1 as a novel HbF repressor. We uncovered the RNA binding proteins LIN28B, IGF2BP1, and IGF2BP3 genes as direct BMI1 targets, and demonstrate that they account for the entirety of BMI1's effect on HbF regulation. BMI1 functions as part of the canonical PRC1 (cPRC1) subcomplex as revealed by the physical and functional dissection of BMI1 protein partners. Lastly, we demonstrate that BMI1/cPRC1 acts in concert with PRC2 to repress HbF through the same target genes. Our study illuminates how PRC silences HbF, highlighting an epigenetic mechanism involved in hemoglobin switching.


Assuntos
Hemoglobina Fetal , Complexo Repressor Polycomb 1 , Proteínas do Grupo Polycomb , Hemoglobina Fetal/genética , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo
15.
Stem Cells ; 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39428975

RESUMO

The heterogeneity of stem cells is a significant factor inhibiting their clinical application, as different cell subpopulations may exhibit substantial differences in biological functions. We performed single-cell sequencing on HUMSCs from three donors of different gestational ages (22 + 5 weeks, 28 weeks, 39 weeks). We also compared the data with single-cell sequencing data from BMSCs from two public databases. The content of CD146+Nestin+ MSCs in preterm HUMSCs (22 + 5W: 30.2%, 28W: 25.8%) was higher than that in full-term HUMSCs (39W: 0.5%) and BMSCs (BMSC1: 0, BMSC2: 0.9%). Cell cycle analysis indicated a higher proportion of cells in the proliferative G2M phase in CD146+Nestin+ MSCs (40.8%) compared to CD146+Nestin- MSCs (20%) and CD146-Nestin- MSCs (12.5%). Degree of differentiation assessment suggested that CD146+Nestin+ MSCs exhibited lower differentiation than other cell subpopulations. Differential gene analysis revealed that CD146+Nestin+ MSCs overexpressed immune regulation-related factors. GO and KEGG enrichment analysis of modules identified by WGCNA suggested enrichment in pathways related to cellular immune regulation, antimicrobial activity, and proliferation. Immune-related gene analysis indicated that CD146+Nestin+ MSCs exhibited expression of multiple immune-related genes associated with "Antimicrobials," "Cytokines," and "Cytokine Receptors." Gene regulatory network analysis revealed high expression of immune-related regulators RELB, GAPB1, and EHF in CD146+Nestin+ MSCs.Our study provides a single-cell atlas of preterm HUMSCs, demonstrating the expression of CD146+Nestin+ MSCs across different tissues and confirming their advantages in cellular proliferation, antimicrobial activity, immune regulation, and low differentiation at the RNA level. This contributes valuable insights for the clinical application of HUMSCs.

16.
Nature ; 576(7785): 158-162, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31776509

RESUMO

Features of higher-order chromatin organization-such as A/B compartments, topologically associating domains and chromatin loops-are temporarily disrupted during mitosis1,2. Because these structures are thought to influence gene regulation, it is important to understand how they are re-established after mitosis. Here we examine the dynamics of chromosome reorganization by Hi-C after mitosis in highly purified, synchronous mouse erythroid cell populations. We observed rapid establishment of A/B compartments, followed by their gradual intensification and expansion. Contact domains form from the 'bottom up'-smaller subTADs are formed initially, followed by convergence into multi-domain TAD structures. CTCF is partially retained on mitotic chromosomes and immediately resumes full binding in ana/telophase. By contrast, cohesin is completely evicted from mitotic chromosomes and regains focal binding at a slower rate. The formation of CTCF/cohesin co-anchored structural loops follows the kinetics of cohesin positioning. Stripe-shaped contact patterns-anchored by CTCF-grow in length, which is consistent with a loop-extrusion process after mitosis. Interactions between cis-regulatory elements can form rapidly, with rates exceeding those of CTCF/cohesin-anchored contacts. Notably, we identified a group of rapidly emerging transient contacts between cis-regulatory elements in ana/telophase that are dissolved upon G1 entry, co-incident with the establishment of inner boundaries or nearby interfering chromatin loops. We also describe the relationship between transcription reactivation and architectural features. Our findings indicate that distinct but mutually influential forces drive post-mitotic chromatin reconfiguration.


Assuntos
Cromatina , Fase G1 , Mitose , Animais , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Camundongos , Coesinas
17.
Mol Cell ; 66(1): 102-116.e7, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28388437

RESUMO

Bromodomain and extraterminal motif (BET) proteins are pharmacologic targets for the treatment of diverse diseases, yet the roles of individual BET family members remain unclear. We find that BRD2, but not BRD4, co-localizes with the architectural/insulator protein CCCTC-binding factor (CTCF) genome-wide. CTCF recruits BRD2 to co-bound sites whereas BRD2 is dispensable for CTCF occupancy. Disruption of a CTCF/BRD2-occupied element positioned between two unrelated genes enables regulatory influence to spread from one gene to another, suggesting that CTCF and BRD2 form a transcriptional boundary. Accordingly, single-molecule mRNA fluorescence in situ hybridization (FISH) reveals that, upon site-specific CTCF disruption or BRD2 depletion, expression of the two genes becomes increasingly correlated. HiC shows that BRD2 depletion weakens boundaries co-occupied by CTCF and BRD2, but not those that lack BRD2. These findings indicate that BRD2 supports boundary activity, and they raise the possibility that pharmacologic BET inhibitors can influence gene expression in part by perturbing domain boundary function.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos , Proteínas Repressoras/metabolismo , Transcrição Gênica , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Sistemas CRISPR-Cas , Linhagem Celular , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Edição de Genes/métodos , Hibridização in Situ Fluorescente , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Imagem Individual de Molécula/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção
18.
Proc Natl Acad Sci U S A ; 119(12): e2121675119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35286198

RESUMO

The uneven spread of COVID-19 has resulted in disparate experiences for marginalized populations in urban centers. Using computational models, we examine the effects of local cohesion on COVID-19 spread in social contact networks for the city of San Francisco, finding that more early COVID-19 infections occur in areas with strong local cohesion. This spatially correlated process tends to affect Black and Hispanic communities more than their non-Hispanic White counterparts. Local social cohesion thus acts as a potential source of hidden risk for COVID-19 infection.


Assuntos
COVID-19/epidemiologia , Disparidades em Assistência à Saúde , SARS-CoV-2 , Coesão Social , COVID-19/transmissão , COVID-19/virologia , Geografia Médica , Humanos , Vigilância em Saúde Pública , São Francisco/epidemiologia
19.
Genes Dev ; 31(16): 1704-1713, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916711

RESUMO

Chromatin structure is tightly intertwined with transcription regulation. Here we compared the chromosomal architectures of fetal and adult human erythroblasts and found that, globally, chromatin structures and compartments A/B are highly similar at both developmental stages. At a finer scale, we detected distinct folding patterns at the developmentally controlled ß-globin locus. Specifically, new fetal stage-specific contacts were uncovered between a region separating the fetal (γ) and adult (δ and ß) globin genes (encompassing the HBBP1 and BGLT3 noncoding genes) and two distal chromosomal sites (HS5 and 3'HS1) that flank the locus. In contrast, in adult cells, the HBBP1-BGLT3 region contacts the embryonic ε-globin gene, physically separating the fetal globin genes from the enhancer (locus control region [LCR]). Deletion of the HBBP1 region in adult cells alters contact landscapes in ways more closely resembling those of fetal cells, including increased LCR-γ-globin contacts. These changes are accompanied by strong increases in γ-globin transcription. Notably, the effects of HBBP1 removal on chromatin architecture and gene expression closely mimic those of deleting the fetal globin repressor BCL11A, implicating BCL11A in the function of the HBBP1 region. Our results uncover a new critical regulatory region as a potential target for therapeutic genome editing for hemoglobinopathies and highlight the power of chromosome conformation analysis in discovering new cis control elements.


Assuntos
Cromatina/química , Eritroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Elementos Reguladores de Transcrição , Globinas beta/genética , Adulto , Proteínas de Transporte/genética , Feto , Inativação Gênica , Humanos , Região de Controle de Locus Gênico , Proteínas Nucleares/genética , Pseudogenes , Proteínas Repressoras , Transcriptoma , gama-Globinas/genética
20.
Dev Biol ; 498: 35-48, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36933633

RESUMO

Fibroblasts play an important role in maintaining tissue integrity by secreting components of the extracellular matrix and initiating response to injury. Although the function of fibroblasts has been extensively studied in adults, the embryonic origin and diversification of different fibroblast subtypes during development remain largely unexplored. Using zebrafish as a model, we show that the sclerotome, a sub-compartment of the somite, is the embryonic source of multiple fibroblast subtypes including tenocytes (tendon fibroblasts), blood vessel associated fibroblasts, fin mesenchymal cells, and interstitial fibroblasts. High-resolution imaging shows that different fibroblast subtypes occupy unique anatomical locations with distinct morphologies. Long-term Cre-mediated lineage tracing reveals that the sclerotome also contributes to cells closely associated with the axial skeleton. Ablation of sclerotome progenitors results in extensive skeletal defects. Using photoconversion-based cell lineage analysis, we find that sclerotome progenitors at different dorsal-ventral and anterior-posterior positions display distinct differentiation potentials. Single-cell clonal analysis combined with in vivo imaging suggests that the sclerotome mostly contains unipotent and bipotent progenitors prior to cell migration, and the fate of their daughter cells is biased by their migration paths and relative positions. Together, our work demonstrates that the sclerotome is the embryonic source of trunk fibroblasts as well as the axial skeleton, and local signals likely contribute to the diversification of distinct fibroblast subtypes.


Assuntos
Somitos , Peixe-Zebra , Animais , Diferenciação Celular , Linhagem da Célula , Fibroblastos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA