RESUMO
In this investigation, synthesis of a surface-functionalized chitosan known as amino-rich chitosan (ARCH) was achieved by successful modification of chitosan by polyethyleneimine (PEI). The synthesized ARCH was characterized by a specific surface area of 8.35 m2 g-1 and a microporous structure, with pore sizes predominantly under 25 nm. The Zeta potential of ARCH maintained a strong positive charge across a wide pH range of 3-11. These characteristics contribute to its high adsorption efficiency in aqueous solutions, demonstrated by its application in removing various anionic dyes, including erioglaucine disodium salt (EDS), methyl orange (MO), amaranth (ART), tartrazine (TTZ), and hexavalent chromium ions (Cr(VI)). The adsorption capacities (Qe) for these contaminants were measured at 1301.15 mg g-1 for EDS, 1025.45 mg g-1 for MO, 940.72 mg g-1 for ART, 732.96 mg g-1 for TTZ, and 350.15 mg g-1 for Cr(VI). A significant observation was the rapid attainment of adsorption equilibrium, occurring within 10 min for ARCH. The adsorption behavior was well-described by the Pseudo-second-order and Langmuir models. Thermodynamic studies indicated that the adsorption process is spontaneous and endothermic in nature. Additionally, an increase in temperature was found to enhance the adsorption capacity of ARCH. The material demonstrated robust stability and selective adsorption capabilities in varied conditions, including different organic compounds, pH environments, sodium salt presence, and in the face of interfering ions. After five cycles of adsorption, ARCH maintained about 60% of its initial adsorption capacity. Due to its efficient adsorption performance, simple synthesis process, low biological toxicity, and cost-effectiveness, ARCH is a promising candidate for future water treatment technologies.
Assuntos
Compostos Azo , Quitosana , Poluentes Químicos da Água , Purificação da Água , Quitosana/química , Polietilenoimina/química , Corantes , Ânions , Cromo/análise , Corante Amaranto , Tartrazina , Adsorção , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de HidrogênioRESUMO
Due to the inherent resistance of bacterial biofilms to antibiotics and their serious threat to global public health, novel therapeutic agents and strategies to tackle biofilms are urgently needed. To this end, we designed and synthesized a novel guanidinium-functionalized pillar[5]arene (GP5) that exhibited high antibacterial potency against Gram-negative E.â coli (BH101) and Gram-positive S.â aureus (ATCC25904) strains. More importantly, GP5 effectively disrupted preformed E.â coli biofilms by efficient penetration through biofilm barriers and subsequent destruction of biofilm-enclosed bacteria. Furthermore, host-guest complexation between GP5 and cefazolin sodium, a conventional antibiotic that otherwise shows negligible activity against biofilms, exhibited much enhanced, synergistic disruption activity against E.â coli biofilms, thus providing a novel supramolecular platform to effectively disrupt biofilms.
Assuntos
Antibacterianos/síntese química , Calixarenos/química , Guanidina/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cefazolina/farmacologia , Escherichia coli/fisiologia , Microscopia Confocal , Staphylococcus aureus/fisiologiaRESUMO
Mitochondrial fission is often associated with the development of oxidative stress related diseases, as the fragmentation of mitochondria undermines their membranes, advances production of reactive oxygen species, and promotes apoptosis. Therefore, induction of mitochondrial aggregation and fusion could potentially reverse such medical conditions. Herein, a supramolecular strategy to induce mitochondrial aggregation and fusion is developed for the first time. A polyethylene glycol (PEG) system that was dually tagged with triphenylphosphonium (TPP) and adamantane (ADA), namely TPP-PEG-ADA, was designed to target mitochondria and functionalize their surfaces with ADA. Thereafter, the addition of cucurbit[7]uril (CB[7]) grafted hyaluronic acid (HA) induced supramolecular aggregation and fusion of mitochondria, via strong host-guest interactions between the CB[7] moiety of CB[7]-HA and ADA residing on the surface of mitochondria. As a proof-of-principle, chemically stressed SH-SY5Y cells and zebrafish neurons were effectively protected via this supramolecular mitochondrial fusion strategy in vitro and in vivo, respectively. This study may open up new venues in not only fundamentally controlling mitochondrial dynamics but also addressing the medical needs to treat diseases associated with mitochondrial fission and fragmentation.
Assuntos
Adamantano/farmacologia , Mitocôndrias/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Polietilenoglicóis/farmacologia , Adamantano/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Camundongos , Mitocôndrias/metabolismo , Conformação Molecular , Compostos Organofosforados/química , Polietilenoglicóis/químicaRESUMO
This is the first time that cucurbit[7]uril and cucurbit[8]uril have been demonstrated to serve as synthetic receptors for a halonium guest species, diphenyleneiodonium, modulating its bioactivities and alleviating its cardiotoxicity, which further expands the onium family of guest molecules for the cucurbit[ n]uril family and provides new insights for halonium-cucurbit[ n]uril host-guest chemistry and its potential applications in pharmaceutical chemistry.
Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Cardiotônicos/química , Cardiotônicos/farmacologia , Halogênios/química , Imidazóis/química , Imidazóis/farmacologia , Animais , Cápsulas , Relação Dose-Resposta a Droga , Coração/efeitos dos fármacos , Camundongos , Células RAW 264.7 , Relação Estrutura-Atividade , Peixe-ZebraRESUMO
Small-molecule kinase inhibitors (SMKIs) have been widely used in the treatment of a variety of cancers due to their clinically demonstrated efficacy. However, the use of some SMKIs, such as sorafenib (SO), has been plagued by their cardiotoxicity that has been frequently observed in treated patients. Herein we report that the encapsulation of SO by a synthetic receptor cucurbit[7]uril (CB[7]) alleviated the inherent cardiotoxicity of SO, as demonstrated in an in vivo zebrafish model. Moreover, the anti-cancer activity of SO was well preserved, upon its encapsulation by CB[7], as demonstrated by both in vitro and in vivo cancer/angiogenesis models. This discovery may provide new insights into a novel supramolecular formulation of SMKIs for the management of their side-effects.
Assuntos
Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Hidrocarbonetos Aromáticos com Pontes/química , Cardiotoxicidade , Imidazóis/química , Niacinamida/análogos & derivados , Compostos de Fenilureia/efeitos adversos , Compostos de Fenilureia/química , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Humanos , Substâncias Macromoleculares , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Neovascularização Fisiológica/efeitos dos fármacos , Niacinamida/efeitos adversos , Niacinamida/química , Sorafenibe , Peixe-ZebraRESUMO
Acute pneumonia is an inflammatory syndrome often associated with severe multi-organ dysfunction and high mortality. The therapeutic efficacy of current anti-inflammatory medicines is greatly limited due to the short systemic circulation and poor specificity in the lungs. New drug delivery systems (DDS) are urgently needed to efficiently transport anti-inflammatory drugs to the lungs. Here, we report an inflammation-responsive supramolecular erythrocytes-hitchhiking DDS to extend systemic circulation of the nanomedicine via hitchhiking red blood cells (RBCs) and specifically "drop off" the payloads in the inflammatory lungs. ß-cyclodextrin (ß-CD) modified RBCs and ferrocene (Fc) modified liposomes (NP) were prepared and co-incubated to attach NP to RBCs via ß-CD/Fc host-guest interactions. RBCs extended the systemic circulation of the attached NP, meanwhile, the NP may get detached from RBCs due to the high ROS level in the inflammatory lungs. In acute pneumonia mice, this strategy delivered curcumin specifically to the lungs and effectively alleviated the inflammatory syndrome.
Assuntos
Curcumina , Pneumonia , beta-Ciclodextrinas , Animais , Curcumina/farmacologia , Sistemas de Liberação de Medicamentos , Eritrócitos , Compostos Ferrosos , Lipossomos , Metalocenos/farmacologia , Camundongos , Pneumonia/tratamento farmacológico , Espécies Reativas de OxigênioRESUMO
Excessive bleeding has always been of great medical challenge, particularly in trauma and surgery. Due to the fast clearance of medicine and complex hemodynamics during hemorrhage, it is often difficult to achieve rapid and effective hemostasis on irregularly shaped, noncompressible visceral bleeding wounds. Herein, we report a hemostatic derived from supramolecularly functionalized platelets (SPLTs), showing rapid hemorrhage controlling effects via efficiently targeting injured vessels and in-situ aggregation. Von Willebrand factor-binding peptide (VBP) modified hyaluronic acid (HA-VBP) decorated platelets (PLTs) were fabricated via supramolecular host-guest interactions between cucurbit[7]uril (CB[7], a host molecule) modified on HA-VBP (HA-CB[7]-VBP) and adamantane (ADA, a guest molecule) anchored on the surface of PLTs (ADA-PLTs). The SPLTs demonstrated approximately 10-fold improvements than the native PLTs in the targeting efficiency into the injured vessels in mice upon intravenous injection. More significantly, the total bleeding time and bleeding volume were dramatically reduced down to less than 1/4 and 1/10 of the control group, respectively, in both external and internal major bleeding mice models. This SPLTs provide a facile yet effective approach for rapid control of major hemorrhage and offers important new insights to the design and development PLTs-based hemostatics. STATEMENT OF SIGNIFICANCE: Hemorrhage is one of the greatest threats to humans in trauma and surgery. To reduce bleeding volume and time, transfusion of hematological products such as platelets (PLTs)-rich plasma is one of the most commonly used therapeutics, but with low targeting and hemostatic efficiency. Thus, engineered PLTs with expanded structural repertoire and functionalities are in urgent clinical needs. Herein, we developed supramolecularly functionalized PLTs (SPLTs), prepared with a mild and facile approach, for rapid control of hemorrhage with significantly enhanced targeting efficiency. The SPLTs not only provide a facile approach for rapid control of major hemorrhage, but also offer important new insights into the development PLTs-based hemostatics.
Assuntos
Plaquetas , Hemostáticos , Animais , Plaquetas/química , Hemorragia/terapia , Hemostasia , Humanos , Camundongos , PlasmaRESUMO
Thromboembolic stroke is typically characterized by the activation of platelets, resulting in thrombus in the cerebral vascular system, leading to high morbidity and mortality globally. Intravenous thrombolysis by tissue plasminogen activator (tPA) administration within 4.5 h from the onset of symptoms is providing a standard therapeutic strategy for ischemic stroke, but this reagent simultaneously shows potential serious adverse effects, e.g., hemorrhagic transformation. Herein, a novel delivery platform based on Annexin V and platelet membrane is developed for tPA (APLT-PA) to enhance targeting efficiency, therapeutic effects, and reduce the risk of intracerebral hemorrhage in acute ischemic stroke. After preparation by extrusion of platelet membrane and subsequent insertion of Annexin V to liposomes, APLT-PA exhibits a high targeting efficiency to activated platelet in vitro and thrombosis site in vivo, due to the binding to phosphatidylserine (PS) and activated platelet membrane proteins. One dose of APLT-PA leads to obvious thrombolysis and significant improvement of neurological function within 7 days in mice with photochemically induced acute ischemic stroke. This study provides a novel, safe platelet-biomimetic nanomedicine for precise thrombolytic treatment of acute ischemic stroke, and offers new theories for the design and exploitation of cell-mimetic nanomedicine for diverse biomedical applications.
Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Anexina A5/uso terapêutico , Biomimética , Plaquetas , Fibrinolíticos , Camundongos , Nanomedicina , Acidente Vascular Cerebral/tratamento farmacológico , Terapia Trombolítica/efeitos adversos , Ativador de Plasminogênio Tecidual/efeitos adversosRESUMO
Reactive oxygen species (ROS) overproduction is involved in many pathological processes, particularly in inflammatory diseases. Therefore, ROS-responsive nanocarriers for specific drug release have been highly sought after. Herein we developed a ROS-responsive drug delivery system based on covalently self-assembled polymer nanocapsules (Azo-NCs) formed via crosslinking macrocyclic cucurbit[6]urils by a photo-sensitive azobenzene derivative (Azo). Luminol, a chemiluminescent molecule activatable by ROS, was co-loaded into Azo-NCs together with a therapeutic payload. When exposed to high ROS concentration that is typically encountered in inflammatory cells or tissues, the ROS-initiated blue chemiluminescence of luminol drives photoisomerization of the Azo groups within Azo-NCs, leading to Azo-NCs' surface transformation and distortion of the nanostructure, and subsequent payload release. As a proof-of-concept, ROS-responsive payload release from luminol-loaded Azo-NCs in inflammatory cells and zebrafish was demonstrated, showing promising anti-inflammatory effects in vitro and in vivo.
Assuntos
Anti-Inflamatórios/uso terapêutico , Hidrocarbonetos Aromáticos com Pontes/química , Portadores de Fármacos/química , Imidazóis/química , Inflamação/tratamento farmacológico , Nanocápsulas/química , Espécies Reativas de Oxigênio/metabolismo , Animais , Compostos Azo/química , Compostos Azo/efeitos da radiação , Liberação Controlada de Fármacos/efeitos da radiação , Inflamação/induzido quimicamente , Inflamação/metabolismo , Isomerismo , Lipopolissacarídeos , Luminescência , Substâncias Luminescentes/química , Luminol/química , Camundongos , Oniocompostos/uso terapêutico , Oxazinas/química , Estudo de Prova de Conceito , Células RAW 264.7 , Espécies Reativas de Oxigênio/química , Peixe-ZebraRESUMO
Unfractionated heparin (UFH), a naturally occurring anionic polysaccharide, is widely used as an anticoagulant agent in clinical practice. When overdosed or used in sensitive patients, UFH may cause various risks and a UFH neutralizer needs to be administered immediately to reverse heparinization. However, the most common UFH neutralizer, protamine sulfate, often causes various adverse effects, some of which are life-threatening. Herein, we designed a highly biocompatible, oligoethylene glycol functionalized guanidinocalixarene (GC4AOEG) as an antidote against UFH. GC4AOEG and UFH exhibited a strong binding affinity, ensuring specific recognition and neutralization of UFH by GC4AOEG in vitro and in vivo. As a consequence, UFH-induced excessive bleeding was significantly alleviated by GC4AOEG in different mouse bleeding models. Additionally, no adverse effects were observed during these treatments in vivo. Taken together, GC4AOEG, as a strategically designed, biocompatible artificial receptor with strong recognition affinity towards UFH, may have significant clinical potential as an alternative UFH reversal agent.
RESUMO
Orally administered colon-targeted formulations of drugs are of great importance in managing diseases in the colon. However, it is often challenging to maintain the integrity of such formulations during delivery, particularly in the gastric environment, which may lead to premature drug release before reaching the targeted colon. Herein, an oral colon-targeted drug delivery hydrogel (OCDDH) was developed through cucurbit[8]uril (CB[8])-mediated noncovalent cross-linking of phenylalanine (Phe)-modified Konjac glucomannan (KGM), in which berberine (BBR), a natural anti-inflammatory product originating from Chinese medicine, was loaded into the hydrogel matrix. With the strong host-guest complexation mediated cross-linking and the inherent reversibility of such interactions, KGM-Phe@CB[8] hydrogel exhibited a readily tunable degree of cross-linking and an excellent self-healing capability, and therefore the hydrogel retained ultrahigh stability in the gastric environment, which is important for orally administered formulations to target the colon. In the colon, KGM may get degraded by colon-specific enzymes, ß-mannanase or ß-glucosidase, resulting in burst release of the loaded cargoes on site. The structure and specific payload release of the hydrogel, with and without BBR, have been fully characterized in vitro, and the therapeutic effect of BBR-loaded KGM-Phe@CB[8] hydrogel was evaluated against dextran sulfate sodium (DSS) induced ulcerative colitis (UC) in a mouse model. Very interestingly, the BBR-loaded KGM-Phe@CB[8] hydrogel exhibited significantly improved therapeutic efficacy in treating colitis, without causing any systemic toxicity, when compared with free BBR. This strategy may pave a new way in the development of advanced supramolecular OCDDH.
RESUMO
Vascular disease remains the leading cause of death and disability, the etiology of which often involves atherosclerosis. The current treatment of atherosclerosis by pharmacotherapy has limited therapeutic efficacy. Here we report a biomimetic drug delivery system derived from macrophage membrane coated ROS-responsive nanoparticles (NPs). The macrophage membrane not only avoids the clearance of NPs from the reticuloendothelial system, but also leads NPs to the inflammatory tissues, where the ROS-responsiveness of NPs enables specific payload release. Moreover, the macrophage membrane sequesters proinflammatory cytokines to suppress local inflammation. The synergistic effects of pharmacotherapy and inflammatory cytokines sequestration from such a biomimetic drug delivery system lead to improved therapeutic efficacy in atherosclerosis. Comparison to macrophage internalized with ROS-responsive NPs, as a live-cell based drug delivery system for treatment of atherosclerosis, suggests that cell membrane coated drug delivery approach is likely more suitable for dealing with an inflammatory disease than the live-cell approach.
Assuntos
Aterosclerose/tratamento farmacológico , Citocinas/metabolismo , Sistemas de Liberação de Medicamentos , Macrófagos/metabolismo , Nanopartículas/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aterosclerose/metabolismo , Atorvastatina/uso terapêutico , Materiais Biomiméticos , Membrana Celular/metabolismo , Liberação Controlada de Fármacos , Feminino , Camundongos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Resultado do TratamentoRESUMO
Gene therapy, with an important role in biomedicine, often requires vectors for gene condensation in order to avoid degradation, improve membrane permeation, and achieve targeted delivery. Macrocyclic molecules are a family of artificial receptors that can selectively bind a variety of guest species. Amphiphilic macrocycles, particularly those bearing cationic charges and their various assemblies represent a new class of promising non-viral vectors with intrinsic advantages in gene condensation and delivery. The most prominent examples include amphiphilic cyclodextrins, calixarenes and pillararenes. Herein, we systemically reviewed reported assemblies of amphiphilic macrocycles for gene delivery and therapy. The advantages and disadvantages of each type of macrocyclic amphiphiles for gene delivery, as well as the perspectives on the future development of this area are discussed.
Assuntos
DNA/metabolismo , Sistemas de Liberação de Medicamentos , Terapia Genética/métodos , Compostos Macrocíclicos/metabolismo , Nanomedicina/métodos , Tensoativos/metabolismo , Calixarenos/química , Calixarenos/metabolismo , Ciclodextrinas/química , Ciclodextrinas/metabolismo , Humanos , Compostos Macrocíclicos/química , Tensoativos/químicaRESUMO
The increasing use of pesticides in agriculture and gardening has caused severe deterioration to both the ecosystem and the health of users (human beings), so there is an urgent need for eco- and user-friendly pesticides. Among a variety of herbicides, paraquat (PQ), frequently used as an effective herbicidal agent worldwide, is well-known for its serious toxicity that has killed, and harmed, thousands of people and countless wildlife such as fish. Herein, we present a facile supramolecular formulation of PQ@cucurbit[7]uril (PQ@CB[7]), prepared by simply mixing PQ with equivalent (molar) CB[7] in water. With addition of CB[7], PQ's cellular uptake was dramatically inhibited. The reactive oxygen species (ROS) generation and the associated apoptosis otherwise induced by PQ in cellular models were both reduced, resulting in increased cellular viability. In a wildtype zebrafish model that is a typical fragile wildlife species in the ecosystem, the supramolecular formulation exhibited significantly reduced hepatotoxicity and increased survival rate, in comparison with those of the fish exposed to free PQ. In a mouse model that is clinically relevant to human being, the administration of PQ@CB[7] significantly alleviated major organ injuries and unusual hematological parameters that were otherwise induced by free PQ, resulting in a significantly increased survival rate. Meanwhile, this formulation maintained effective herbicidal activity that was equivalent to that of free PQ. Taken together, this facile supramolecular PQ formulation is providing not only an extremely rare example of an eco- and user-friendly herbicide that has been desired for decades but also a practical solution for green agriculture.
Assuntos
Herbicidas/farmacologia , Paraquat/farmacologia , Animais , Apoptose/efeitos dos fármacos , Química Verde , Herbicidas/síntese química , Herbicidas/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Paraquat/síntese química , Paraquat/química , Poaceae/efeitos dos fármacos , Poaceae/crescimento & desenvolvimento , Peixe-Zebra/metabolismoRESUMO
Hexadimethrine bromide (HB), a polycation to neutralize heparin and control internal bleeding, may also cause serious blood coagulation that may be life-threatening. Reversal of HB by heparin and vice versa might potentially lead to a vicious circle of alternative bleeding and blood coagulation. In this Letter, a biocompatible synthetic nanoreceptor, cucurbit[7]uril (CB[7]), was demonstrated to dramatically alleviate HB-induced blood coagulation in vitro as well as in vivo, through the formation of HB@CB[7] polypseudorotaxanes. This discovery, for the first time, suggests the significant clinical potential of a synthetic receptor in alleviating the side effects and toxicity of a polycationic drug.
RESUMO
Due to its outstanding capability to facilitate DNA condensation, transportation and endosomal escape, polyethylenimine (PEI) has been frequently studied for gene delivery. However, its molecular weight (M.W.) dependent transfection efficiency and cytotoxicity has severely limited its clinical application. To resolve this dilemma, a supramolecular strategy was developed for the first time, in which PEI with large M.W. (branched, 25 kDa) that has a satisfactory transfection efficiency, yet high non-specific cytotoxicity for gene delivery was wrapped with macrocyclic cucurbit[7]uril (CB[7]). The successful wrapping of the PEI by the macrocyclic CB[7] was proved by 1H NMR spectroscopy and supported by isothermal titration calorimetry (ITC). The plasmid DNA (pDNA) condensability of PEI was not affected by the supramolecular coating as evidenced from the agarose gel electrophoresis assay. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) results demonstrated that the particle size, zeta potential, and morphology of the self-assemblies of PEI/pDNA and PEI/CB[7]/pDNA were comparable. As a consequence of the supramolecular wrapping, the cytotoxicity of PEI was significantly constrained as demonstrated by MTT assay, apoptosis assay, and a hemolysis study. In particular, both the cellular uptake and the gene transfection efficiency results suggest that the supramolecular wrapping of PEI by CB[7] exhibits negligible effects on PEI, thus functioning as an effective non-viral gene delivery vector. This novel supramolecular-wrapping strategy provides new insights for facile alleviation of the non-specific toxicity of PEI and potentially other polycationic gene vectors without compromising their transfection efficiency.
Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Imidazóis/química , Polietilenoimina/química , Transfecção/métodos , Apoptose/efeitos dos fármacos , Hidrocarbonetos Aromáticos com Pontes/toxicidade , Linhagem Celular Tumoral , Células HEK293 , Hemólise/efeitos dos fármacos , Humanos , Imidazóis/toxicidade , Plasmídeos/genética , Polietilenoimina/toxicidadeRESUMO
The photosensitizer Chlorin e6 (Ce6) has been frequently employed for photodynamic therapy (PDT) of cancer; however, its nonspecific toxicity has limited its clinical applications. In this study, we prepared chitosan nanoparticles (CNPs), with a mean diameter of approximately 130 nm, by a nonsolvent-aided counterion complexation method in an aqueous solution, into which Ce6 could be physically entrapped during the preparation process. These CNPs and Ce6-loaded CNPs (CNPs-Ce6) were fully characterized by UV-vis, photoluminescence, and Fourier transform infrared spectroscopic analysis, as well as dynamic light scattering and transmission electron microscopy measurements. More importantly, the biocompatibility of the otherwise toxic Ce6 was significantly improved upon its loading into the CNPs, as demonstrated by both confocal laser scanning microscopy analysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Furthermore, the PDT efficiency of Ce6-loaded CNPs was dramatically enhanced, in comparison with that of the free Ce6, as shown by both MTT and flow cytometry assays. This discovery provides a novel strategy for improving the biocompatibility and therapeutic efficacy of PDT agents by using a natural, biocompatible polysaccharide carrier.
Assuntos
Nanopartículas , Quitosana , Clorofilídeos , Humanos , Neoplasias , Fotoquimioterapia , Fármacos Fotossensibilizantes , PorfirinasRESUMO
A synthetic nanoreceptor, cucurbit[7]uril (CB[7]), fully encapsulated pentylenetetrazol (PTZ), a seizure-inducing model drug. As a consequence of the encapsulation, the development of PTZ induced convulsion behaviors in both larval zebrafish and mouse models were dramatically alleviated, suggesting that CB[7] holds great neuroprotection potential against neurotoxic drugs for clinical applications.
Assuntos
Hidrocarbonetos Aromáticos com Pontes/farmacologia , Imidazóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Convulsões/tratamento farmacológico , Animais , Modelos Animais de Doenças , Larva , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Pentilenotetrazol/efeitos adversos , Convulsões/induzido quimicamente , Peixe-ZebraRESUMO
In order to develop a novel strategy to alleviate the inherent hepatotoxicity of antidepressant trazodone (TZ), Cucurbit[7]uril (CB[7]) was adopted as pharmaceutical excipients and was studied for its capability to reduce the hepatotoxicity of TZ via supramolecular encapsulation. CB[7] was found to form strong 1:1 host-guest complexes with TZ and its metabolite m-chlorophenyl piperazine (mCPP), with binding constants of 1.50 (±0.13)â¯×â¯106â¯M-1 and 6.90 (±0.49)â¯×â¯105â¯M-1, respectively. The supramolecular complexations were examined by 1H NMR and UV-visible spectroscopic titrations, ESI-MS and ITC. In the presence of 0.5â¯mM CB[7], the IC50 values of TZ and mCPP on a human normal liver cell line L02 were increased from 215.5⯱â¯3.3⯵M to 544.1⯱â¯51.2⯵M, and from 166.8⯱â¯3.8⯵M to 241.7⯱â¯6.8⯵M, respectively. Evaluation on a zebrafish model demonstrated that CB[7] (0.1â¯mM) significantly alleviated the TZ induced liver toxicity, as shown by the level of liver degeneration, liver size and yolk sac retention. Our study may provide a supramolecular strategy to alleviate the hepatotoxicity induced by TZ and its metabolite mCPP, and this strategy may be extendable to other drugs that have inherent hepatotoxicity or other adverse effects.
Assuntos
Antidepressivos de Segunda Geração/toxicidade , Fígado/efeitos dos fármacos , Trazodona/toxicidade , Animais , Hidrocarbonetos Aromáticos com Pontes/química , Calorimetria , Linhagem Celular , Excipientes/química , Humanos , Imidazóis/química , Concentração Inibidora 50 , Larva/efeitos dos fármacos , Modelos Animais , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta , Saco Vitelino , Peixe-Zebra/embriologiaRESUMO
Paraquat, as one of the most widely used herbicides globally, is highly toxic to humans, and chronic exposure and acute ingestion leads to high morbidity and mortality rates. Here, we report user-friendly, photo-responsive paraquat-loaded supramolecular vesicles, prepared via one-pot self-assembly of amphiphilic, ternary host-guest complexes between cucurbit[8]uril, paraquat, and an azobenzene derivative. In this vesicle formulation, paraquat is only released upon UV or sunlight irradiation that converts the azobenzene derivative from its trans- to its cis- form, which in turn dissociates the ternary host-guest complexations and the vesicles. The cytotoxicity evaluation of this vesicle formulation of paraquat on in vitro cell models, in vivo zebrafish models, and mouse models demonstrates an enhanced safety profile. Additionally, the PQ-loaded vesicles' herbicidal activity against a model of invasive weed is nearly identical to that of free paraquat under natural sunlight. This study provides a safe yet effective herbicide formulation.