Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 24(23): e202300582, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728423

RESUMO

(R)-ß-piperonyl-γ-butyrolactones are key building blocks for the synthesis of podophyllotoxin, which have demonstrated remarkable potential in cancer treatment. Baeyer-Villiger monooxygenases (BVMOs)-mediated asymmetric oxidation is a green approach to produce chiral lactones. While several BVMOs were able to oxidize the corresponding cyclobutanone, most BVMOs gave the (S) enantiomer while Cyclohexanone monooxygenase (CHMO) from Brevibacterium sp. HCU1 gave (R) enantiomer, but with a low enantioselectivity (75 % ee). In this study, we use a strategy called "focused rational iterative site-specific mutagenesis" (FRISM) at residues ranging from 6 Šfrom substrate. The mutations by using a restricted set of rationally chosen amino acids allow the formation of a small mutant library. By generating and screening less than 60 variants, we achieved a high ee of 96.8 %. Coupled with the cofactor regeneration system, 9.3 mM substrate was converted completely in a 100-mL scale reaction. Therefore, our work reveals a promising synthetic method for (R)-ß-piperonyl-γ-butyrolactone with the highest enantioselectivity, and provides a new opportunity for the chem-enzymatic synthesis of podophyllotoxin.


Assuntos
Oxigenases , Podofilotoxina , Oxigenases/metabolismo , Oxigenases de Função Mista/metabolismo , Oxirredução , Especificidade por Substrato
2.
Anal Chem ; 93(36): 12221-12229, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34461018

RESUMO

With a proper band gap of ∼2.4 eV for solar light absorption and suitable valence band edge position for oxygen evolution, scheelite-monoclinic bismuth vanadate (BiVO4) has become one of the most attractive photocatalysts for efficient visible-light-driven photoelectrochemical (PEC) water splitting. Several studies have indicated that surface modification of BiVO4 with a cocatalyst such as NiFe layered double hydroxide (LDH) can significantly increase the PEC water splitting performance of the catalyst. Herein, we experimentally investigated the charge transfer dynamics and charge carrier recombination processes by scanning electrochemical microscopy (SECM) with the feedback mode on the surface of BiVO4 and BiVO4/NiFe-LDH as model samples. The ratio of rate constants for photogenerated hole (kh+0) to electron (ke-0) via the photocatalyst of BiVO4/NiFe-LDH reacting with the redox couple is found to be five times larger than that of BiVO4 under illumination. In this case, the ratio of the rate constants kh+0/ke-0 stands for the interfacial charge recombination process. This implies the cocatalyst NiFe-LDH suppresses the electron back transfer greatly and finally reduces the surface recombination. Control experiments with cocatalysts CoPi and RuOx onto BiVO4 further verify this conclusion. Therefore, the SECM characterization allows us to make an overall analysis on the function of cocatalysts in the PEC water splitting system.

3.
ACS Appl Mater Interfaces ; 16(28): 36462-36470, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38956932

RESUMO

Artificial photosynthesis is an effective way of converting CO2 into fuel and high value-added chemicals. However, the sluggish interfacial electron transfer and adsorption of CO2 at the catalyst surface strongly hamper the activity and selectivity of CO2 reduction. Here, we report a photocathode attaching zeolitic imidazolate framework-8 (ZIF-8) onto a ZnTe surface to mimic an aquatic leaf featuring stoma and chlorophyll for efficient photoelectrochemical conversion of CO2 into CO. ZIF-8 possessing high CO2 adsorption capacity and diffusivity has been selected to enrich CO2 into nanocages and provide a large number of catalytic active sites. ZnTe with high light-absorption capacity serves as a light-absorbing layer. CO2 molecules are collected in large nanocages of ZIF-8 and delivered to the ZnTe surface. As evidenced by scanning electrochemical microscopy, the interface can effectively boost interfacial electron transfer kinetics. The ZIF-8/ZnTe photocathode with unsaturated Zn-Nx sites exhibits a high Faradaic efficiency for CO production of 92.9% and a large photocurrent of 6.67 mA·cm-2 at -2.48 V (vs Fc/Fc+) in a nonaqueous electrolyte at AM 1.5G solar irradiation (100 mW·cm-2).

4.
Chem Sci ; 14(26): 7346-7354, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37416724

RESUMO

Advances in the rational design of semiconductor-electrocatalyst photoelectrodes provide robust driving forces for improving energy conversion and quantitative analysis, while a deep understanding of elementary processes remains underwhelming due to the multistage interfaces involved in semiconductor/electrocatalyst/electrolyte. To address this bottleneck, we have constructed carbon-supported nickel single atoms (Ni SA@C) as an original electron transport layer with catalytic sites of Ni-N4 and Ni-N2O2. This approach illustrates the combined effect of photogenerated electron extraction and the surface electron escape ability of the electrocatalyst layer in the photocathode system. Theoretical and experimental studies reveal that Ni-N4@C, with excellent oxygen reduction reaction catalytic activity, is more beneficial for alleviating surface charge accumulation and facilitating electrode-electrolyte interfacial electron-injection efficiency under a similar built-in electric field. This instructive method enables us to engineer the microenvironment of the charge transport layer for steering the interfacial charge extract and reaction kinetics, providing a great prospect for atomic scale materials to enhance photoelectrochemical performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA